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Our future is powered by clean energy
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Clean energy minerals (CEMs) enable clean energy transition

Minerals used in selected clean energy technologies
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The Role of Critical Minerals in Clean Energy Transitions, IEA report (2021) IEA. All rights reserved.

Notes: kg = kilogramme; MW = megawatt. The values for vehicles are for the entire vehicle including batteries, motors and glider. The intensities for an electric car
are based on a 75 kWh NMC (nickel manganese cobalt) 622 cathode and graphite-based anode. The values for offshore wind and onshore wind are based on the
direct-drive permanent magnet synchronous generator system (including array cables) and the doubly-fed induction generator system respectively. The values for
coal and natural gas are based on ultra-supercritical plants and combined-cycle gas turbines. Actual consumption can vary by project depending on technology 4
choice, project size and installation environment.
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Clean energy minerals (CEMs) are becoming ‘new energy imports’
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Limited CEM supplies means slow clean energy transition and slow
economic growth in 2023+

In the SDS, the required level of supply growth for most minerals is well above the levels seen
in the past decade

Annual average total demand growth for selected minerals by scenario
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IEA. All rights reserved.

Notes: Total demand includes both demand from clean energy technologies and other consuming sectors. kt = thousand tonnes; STEPS = Stated Policies Scenario;
SDS = Sustainable Development Scenario.
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Increasingly dilute and wasteful mines necessitate alternative sources
for metals and new mining technologies

» Can we disrupt the trend in naturally dilute metal mining (Ni, Co, REEs) and mine
from generally regarded subeconomic for less money, less energy, lower
emissions, and fewer wastes?

Mined output Tailings Waste rock

= 25 1.0% £ 5000 250x £ 12500 750x
20 0.8% 4 000 200x 10 000 600x

15 =~ 0.6% 3000 150x 7 500 / 450x

10 0.4% 2 000 100x 5000 300x

5 0.2% 1000 50x 2 500 150x

2010 2017 2010 2017 2010 2017
Mined output mmm Tailings Waste rock
—o-Qre quality (right axis) =o=Tailings per mined output (right axis) —e—\\aste rock per mined output (right axis)

IEA. All rights reserved.

k“ Source: |IEA analysis based on data updated and expanded from Mudd and Jowitt (2016).
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Alternative sources of critical minerals?
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Alternative sources of critical minerals?
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Phytomining — what does this workshop cover?
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» A natural extension of botanical
prospecting and the study of metal
biochemistry and biogeography of metal
hyperaccumulator plants

» Extraction from uneconomic resources
» Exclusively utilizes hyperaccumulators
» Carried out on non-arable lands

— natural serpentine soil

— anthropogenic waste lands
up to ~5 m » Includes downstream processes

' — biomass processing
M+ — metal separation
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Global Hyperaccumulator Database

Periodic table Of PhytOmlnlng http://hyperaccumulators.smi.uq.edu.au/collection/

Group=p 1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18

4
PEi'iDd
1 ini 2
T |4 D D common phytomining targets e
> B2 : 3 common impurities in bio-ore 5 218 |9 [0
Be ¥ B N O F MNe
X less common impurities in bio-ore
3 - 1711 18
= . Cl || Ar
a4 N2y §271p%2][ 23] 24 P€6 2? 23 29 3::: 31 32 33 34 35 || 36
VK ARCay SCoaf Ti V|| Cr (fMn]| Fe Nl Cu En Ga Ge SE Br || Kr
5 37| 38 3911401141 (142 ]|) 43 (| 44 53 || 54
Rb || Sr Y §| Zr || Nb || Mo|| Tc || Ru g Te [ [| Xe
6 |S51|56|*|71(7 73117417576 || 77 ?8 20 B’II Bg 83| 84 || 85| 86
Cs || Ba Lu || H Ta || W || Re || Os || Ir Pt (FAURHg | T Bi || Po || At || Rn
7 87 || 88 |*|103(|1041105(1106({107]{108||109|{110(| 11111 12{1 113/ (114 TTI5/{1T16[|117]|118
Fr [|Ra|*| Lr || Rf ||Db || Sg |[|Bh || Hs || Mt||Ds [[Rg || Cn || Nh|| FI ||Mc|| Lv || Ts || Og
*P 57| 58| 59| 60| 61| 62| 63 Eﬂ t‘ig 66 || 67 || 68 || 69 ?B
La |[ Ce || Pr [[Nd]||Pm||Sm]|| Eu || G T D Ho || Er [|[Tm|[ Y
*| 89 9111920 93 (] 94| 95(] 96 QZ 9% 99 |1 100/{1017(]1102
¥ Ac|[fTh |l Pa|f U JINp || Pu|{|Am| Cm]|| B C Es [| Fm||Md || No

rpare

This meeting is being recorded




Amborellales

High diversity of hyperaccumulators (HAs)

provides a host of options SE= L
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Nickel in US surface soil
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Nickel in US surface soil
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Opportunistic surface REE deposits in the US

Sheep Creek, MT
new USGS survey planned
low radioactives

REE minerals: monazite, xenotime
Ore minerals: fluorite, hematite, thorite

Diamond Creek, ID
~1% - >4% TREO

Mountain Pass, CA
18.4 MT carbonatite
ore reserves
grading 7.98% REO
cut-off at 5%

Trans-Pecos, TX
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US total REE reserve: 2,300,000 Mt (~1% of world)

$2.5T worldwide market by 2030
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2022 US production: 43,000 Mt
2022 US imports: 11,000 Mt

https://mrdata.usgs.gov/ree/map-us.html




Abandoned mines in the U.S. — anthropogenic source of CEMs
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SIMPLIFIED HPAL PROCESSING FLOWSHEET

goes
ORE PREPARATION

The nickel laterite ore is delumped and
slurried with water while rejecting coarse
barren material

Ni HPAL 1

Nascent space requires R&D for optimizing biomass
processing and metal separation
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3 Day-Virtual Workshop & Breakout Discussions

» DAY 1 (5/30): Phytomining, General Topic
» DAY 2 (6/01): Hyperaccumulators — Agronomy, Biology, and Soil Science
» DAY 3 (6/14): Biomass processing & Metal extraction/separation

Metal
upstream DAY 3 prOd uct

downstream '

QrpQa-e
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Invited speakers

Dr. Rufus Chaney (ret. USDA) Prof. Victor Vasquez (Univ. Nevada, Reno)
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Workshop guidelines and rules

» Ask many questions after speaker presentations (enter questions in the chat)
» Engage actively during B/O sessions (your opinions matter!)

» Network with the participants and look for potential partners

» Request follow up meetings with ARPA-E (phil.kim@hg.doe.gov)

» ARPA-E is NOT looking for reaching a consensus during the workshop
» ARPA-E wants to gather inputs and opinions from all of you

You may not cross the boundaries set by the laws of physics!
However, erase the ‘box’ around your usual thinking!
Have fun!

Gl e
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DAY 1 Breakout Session Please be back by 2:45 pm ET

» If you haven't registered, please register now
» WebEX link: https://doe.webex.com/weblink/register/r873475edc505c2deeeab02ddcfcd21e4

» Email to request registration for Day 2 and 3 Breakouts: Kalena.Stovall@hg.doe.gov

ClpCre
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AGENDA - DAY 1 (MAY 30™)

An 1. ARPA-E Introduction
1:00 =110 PM Dr. Evelyn Wang, ARPA-E Director

Workshop Goals, US critical mineral supply chain issues, Phytomining as an
1:10 - 1:25 PM alternative solution
Dr. Philseok Kim, ARPA-E Program Director

Invited Talk: The history of phytoremediation and phytomining in the U.S.

125 =2Z15PM 1 by Rufus Chaney (retired, former USDA)

Invited Talk: TEA and LCA considerations for phytomining in the U.S.

215 =230PM | b fessor Victor Vasquez (University of Nevada, Reno)

2:30 — 2:40 PM Break; Transition to Breakout 1

2:40 — 4:00 PM | Breakout 1: Phytomining in the US (General Topic)

Next Steps

400 - 405 PM Dr. Philseok Kim, ARPA-E Program Director

Gipc-e
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AGENDA - DAY 2 (JUNE 15t)

Readout from Breakout 1

1:00 =115 PM Dr. Philseok Kim, ARPA-E Program Director
115 - 1:50 PM Invited Talk: Agromining — A European Perspective
' ‘ Dr. Antony van der Ent (Econick and Botanickel)
1:50 = 2:50 PM Breakout 2a: Hyperaccumulators — Agronomy, Biology, Soil Science (from seed to

metal crops)
2:50 — 3:00 PM Break
3:00 - 4:.00 PM Breakout 2b: Hyperaccumulators — Agronomy, Biology, Soil Science (continued)

This meeting is being recorded 25
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AGENDA - DAY 3 (JUNE 14th)

Readout from Breakout 2

1:00 - 1:15FM Dr. Philseok Kim, ARPA-E Program Director

Invited Talk: Separation of nickel and rare earth elements from
1:15 - 1:50 PM hyperaccumulators
Professor Marie-Odile Simonnot (University of Lorraine, Nancy, France)

Breakout 3: Biomass Processing, Metal Extraction & Separation (from metal crop

1:50=2:50PM |0 high-value metal products)

2:50 - 3:00 PM Break

Breakout 3: Biomass Processing, Extraction & Separation (from metal crop to

3:00 - 4:00 PM high-value metal products) (continued)

Next Steps

4:00 - 4:05 PM Dr. Philseok Kim, ARPA-E Program Director

This meeting is being recorded 26
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