## A Portable Thomson Scattering System to Measure Plasma Density and Temperature

## Lawrence Livermore National Laboratory

## UC San Diego

We use optical Thomson scattering to probe  $n_e$ ,  $T_e$ , or  $T_i$  at several locations along the plasma depending on the fusion concept team's interests. A 1.5-ns, 532-nm, 8-J laser is used as a probe, and scattered light spectrum is measured by two spectrometers coupled to ns-gated CMOS cameras.



| Contacts      | Clément Goyon, LLNL, goyon1@llnl.gov                                                               |  |
|---------------|----------------------------------------------------------------------------------------------------|--|
|               | S. Bott-Suzuki, UCSD, sbottsuzuki@ucsd.edu                                                         |  |
| Key Reference | <i>"Plasma Scattering of Electromagnetic Radiation"</i> Froula, D. H., et al. Academic Press. 2011 |  |





| Key Properties                   |                                                                                                       |
|----------------------------------|-------------------------------------------------------------------------------------------------------|
| Physical Property to be Measured | Electron density $(n_e)$ , electron temperature $(T_e)$ , ion temperature $(T_i)$ , and flow velocity |
| Technique                        | Spectrally resolved Thomson scattering of laser probe inside plasma                                   |
| Plasma parameter range           | $n_e > 10^{17} \text{cm}^{-3}$ and $T_e$ , $T_i > 10 \text{ eV}$                                      |
| Time Resolution                  | Nanosecond resolution                                                                                 |
| Spatial Resolution               | up to 22 signals each from a localized volume ( <mm<sup>3) inside plasma</mm<sup>                     |
| Spectral resolution              | 0.09 nm for electron parameters and 0.03 nm for ion parameters                                        |
| Suitable for MCF, ICF, MIF?      | MIF and ICF                                                                                           |
| Set-up time                      | 2-3 weeks                                                                                             |
| Minimum time for a measurement   | 2 weeks to first data                                                                                 |
| Other characteristics            | Thomson scattering is the gold standard for plasma temperature and density measurements               |
| Requirements                     | 2 optical windows for laser input port and optical collection                                         |