

A Vision for Decarbonizing Building HVAC Operations via Co-Designed Modular Direct Air Capture Systems

Marina Sofos, Ph.D. Program Director @ ARPA-E

ARPA-E Workshop - Day 1

February 27, 2023

Improving commercial HVAC efficiency can have a big impact

HVAC systems are responsible for the largest category of end-use energy consumption in buildings

Even with continual efficiency improvements, overall AC usage is rising due to increased demand

Sources: EIA Annual Energy Outlook 2022; "EIA Projects Air-Conditioning Energy Use to Grow Faster than Any Other Use in Buildings." U.S. Energy Information Administration.

The contribution from dehumidification is rising

Humidity loads – 600 MtCO₂eq or 1/3 of annual HVAC emissions & growing

Annual emissions from cooling energy – Humidity load emissions 5x greater by 2050

Fraction of cooling-related emissions from humidity likely to increase due to trends in building efficiency & ventilation requirements

Conventional systems "overcool" to remove humidity

Controlling Moisture in Ventilation Air:

- Conventional vapor compression refrigeration cycles make up to 99% of space cooling systems
- Cool process air below its dew point T to dehumidify the air and typically reheat to desired T
- Energy intensive & inefficient process due to large latent load and additional load due to reheating of the air
- Latent load takes up to 76% of total energy load required to condition a space

Sources: Goetzler W, Zogg R, Young J, Johnson C. Alternatives to vapor-compression HVAC technology. Ashrae Journal. 2014 Oct 1;56(10):12.; O.M. Zaki, R.H. Mohammed, O. Abdelaziz, Energy Conversion and Management 256 (2022) 115380.; J.D. Batukray, Zenodo (2019).

10x moisture removal efficiency improvement w/ new separation processes

Temperature loads – Improved cooling efficiency can also be expected

Sources: S. Garimella, K. Lockyear, D. Pharis, O. El Chawa, M.T. Hughes, G. Kini, Joule 6 (2022) 956–971.

Expanding Carbon Utilization Approaches

Gton Carbon Removal Capacity Will be Necessary

Source: National Academy of Sciences. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda. 2019. p. 3

Opportunity for Buildings?

Number of strategies for servicing a negative emissions industry

CHANGING WHAT'S POSSIBLE

Energy requirements for DAC need to be considered

Climeworks DAC (1 module)		
Face area	20 m ²	
(Vol) Flow rate	2.86 m ³ /s	
Face velocity	0.183 m/s	
Capture rate	~130 kg/day	
Capture efficiency (est.)	70%	
Fan and system energy	300 kWh/tCO ₂	
Regeneration energy	2000 kWh/tCO ₂	
Compression energy (est.)	100 kWh/tCO ₂	
DAC pressure (est.)	~300 Pa	
Total energy	2400 kWh/tCO ₂	

*Assuming running 24 hours per day and system efficiency of \sim 50%

In 2021, the average annual electricity consumption for a U.S. residential utility customer was 10,632 kWh, an average of about 886 kWh per month.

Transform our buildings HVAC operations:

- lower energy requirements for small, modular DAC
- expand SSL approaches & improve energy performance of HVAC systems

Starting framework

Proposed HDVAC Target

Objective	Category	Target
System efficiency (kW _{HDVAC} /kW _{HVAC-intake})	Energy usage	0.5

HVAC_{intake} (**kW**) = Dehumidification + Cooling + (Reheat) + Ventilation **HDVAC** (**kW**) = Cooling (\downarrow) + Total ventilation (\uparrow) + DAC energies Comparing HDVAC to HVAC cooling outside air (power not energy)

Developing Potential Program Metrics

• Objectives:

- Strike balance between achieving capture efficiency & overall system performance
- Employ relevant metrics for tomorrow's HVAC systems
- Consider path to market (residential vs. commercial, new construction vs. retrofit)

Challenges:

- Performance requirements are **building-type**, **climate-zone specific**
- Adoption dependent on installation and maintenance
- Maintenance of acceptable/improved indoor air quality

Developing Potential Metrics

Objective	Category	Target
Indoor air quality (CO_2) (during occupancy)	Health	< 600 ppm CO ₂
Indoor air quality (TVOC) (during occupancy)	Health	< 0.3 mg/m ³
System efficiency (kW _{HDVAC} /kW _{HVAC-intake})	Energy usage	0.5
DAC quality factor ($-\ln(\text{penetration})/\Delta P$) e.g., 70% DAC @ 1 kPa = $-\ln(0.3)/1 = 1.2$	CO ₂ capture	> 6 kPa ⁻¹
CO ₂ capture rate (metric tons/year)	CO_2 capture	> 1.5 × AC tons (mt/year)
Sorbent useful lifetime (kg _{CO2} /kg _{sorbent})	Maintenance	1000
Manual service (Sorbent change, CO_2 collection, filters, etc.)	Maintenance	< 3× per year
Form factor increase (FF _{HDVAC} /FF _{Original-HVAC})	Engineering limits	1.2
Payback (HVAC savings only, no carbon credit)	Capital	< 2 years

Identifying viable pathways for carbon utilization

Life-cycle and cost implications need to be considered:

- On-site vs. off-site use?
- Storage, transportation and associated logistics?
- Potential on-site uses?

Path to Market: Efficiency Standards & Test Procedures

2/28/23, 7:46AM	Appliance Stand	ards — Site	
COMPLIANCE ENERGY CONSERVATION			
	ৠ█▌؋ॵऒऀॼॹॶ		

Appliance and Equipment Standards Program

The Appliance and Equipment Standards Program's 3-part Mission is to:

- Mikitederection
 Mik

While Important, Not in Scope for This Potential Effort

- Development/expansion of carbon markets
- Updates to/adoption of current/future HVAC system efficiency standards
- Development of new testing specifications
- Innovations in manufacturing methods and practices
- Adoption of new carbon utilization infrastructure and policies

First Breakout Sessions: System Design

Facilitator: Peter Debock

Notetaker:

Daniel Garcia

Sade

Ruffin

Recirculation

Facilitator: Notetaker: Kate Laurent Pilon Pitman

Exhaust Air

Facilitator: Tony Bouza

Air From Notetaker: Building

Facilitator: Notetaker: Kalena Jenifer Shafer Stovall

Modular

Second Breakout Sessions: Metrics

Facilitator: Peter Debock

Notetaker: Daniel

Garcia

Sade

Ruffin

System Configuration

Climate Zone

Building Type

Facilitator: Notetaker: Kate Laurent Pilon Pitman

Installation & Maintenance

Facilitator: Notetaker: Tony Bouza

Facilitator: Notetaker: Jenifer Kalena Shafer Stovall

What We Want from You Today and Tomorrow

Shape potential program structure:

- Establish the most impactful categorization to achieve both emission reduction & carbon removal goals
- Identify any critical technologies/pathways that are missing
- Prioritize key metrics that are ambitious, yet achievable for success (R&D needs)

Stakeholder Outreach:

- Spread the word for potential interest in this area!
- Identify critical expertise not currently on our radar

Networking/Team Building:

 Facilitate connections across the technology development pipeline for potential project teaming

Rest of Day 1 Agenda – Objective: Establishing a Framework

9:20 – 10:05 AM	Participant Introductions
10:05 – 10:20 AM	Break
10:20 – 10:50 AM	Future of HVAC Technologies: Challenges & Opportunities Tony Bouza, Buildings Technologies Office, U.S. Department of Energy
10:50 – 11:20 AM	Future of DAC Technologies: Challenges & Opportunities Katherine Hornbostel, University of Pittsburgh
11:20 – 11:30 AM	Breakout Logistics
11:30 – 12:30 PM	Lunch
12:30 – 1:45 PM	Breakout Sessions System Design
1:45 – 2:00 PM	Break
2:00 – 3:25 PM	Technology Approaches to HDVAC Harvey Bryan, Arizona State University Kashif Nawaz, Oak Ridge National Lab Udi Meirav, enVerid
3:25 – 3:30 PM	Metrics Breakout Overview
3:30 – 5:00 PM	Breakout Sessions Metrics

Day 2 Agenda Preview - Objective: Deployment Strategies

8:30 – 8:45 AM	Day 1 Summary and Day 2 Objectives Marina Sofos, ARPA-E
8:45 – 9:45 AM	Fireside Chat on Commercialization Requirements and Barriers Moderator: Ken Pulido, ARPA-E
9:45 – 10:00 AM	Potential Factors Impacting HDVAC Deployment Ken Pulido, ARPA-E
10:00 – 10:15 AM	Break
10:15 – 11:45 AM	Breakout Sessions
11:45 – 12:00 PM	Wrap-up/Adjourn

THANK YOU!

Marina Sofos, Ken Pulido Advanced Research Projects Agency-Energy

Mervin Chao, Daniel Garcia, Kate Pitman Booz Allen Hamilton

*15 min. meeting slots available with ARPA-E team for this Friday 1-4 pm ET; Sign-up sheets will be made available after this morning's session

Technologies for Transforming Building Materials into Carbon Sinks

Marina Sofos, Ph.D. Program Director @ ARPA-E

ARPA-E Carbon Negative Building Materials Workshop - Day 2

March 25, 2021

Day 1 Recap – Themes in What We Heard from You

- Performance Advantage
- Durability and Service Life
- Multifunctional Materials
- Transparency
- Uncertainty

Day 1 Recap – Some Ways We're Thinking Now...

• Categorization:

- Flooring assembly that meets specific structural requirements over a given span
- Materials that meet both structural and insulating property requirements
- Enabling multifunctionality

• Metrics:

- Emphasize reproducibility over final deliverable size

• LCA:

- Achieve performance first and then quantify LCA
- BUT the LCA then needs to cover the full life, not just A1-A3

• Markets & Drivers:

- Institutional buildings may be good first market
- Can't have equivalent replacements: products must be better than incumbent

	Revised	
Categorization	 Building Elements Assemblies: Flooring, Walls, etc. Performance / Purpose (ex. Structural) 	
Performance Metrics	 Min 200% carbon storage (LCA A1-A3) (100% for cementitious materials) Durability testing – accelerated aging / wear Code-based standard performance Fire safety rating Health / toxicity assessment (in service and production) Cradle-to-grave LCA Optional: region-based testing included (ex. meet seismic performance for CA) 	
Sample Requirements	 Large enough samples for required test specimen count per test Samples made on different days to test performance repeatability 	

Framework for Materials Under Consideration

Maximum potential to impact embodied/stored carbon @ scale

- Evaluate proposed material categories based on ARPA-E framework (i.e. likelihood of deployment vs. potential impact)
- Prioritize greatest technical challenges within a selected category
- Identify any critical technologies/pathways that are missing

Truly Neutral Concrete

- Problem: Concrete is the biggest contributor to CO₂ emissions in the built environment.
- Opportunity: With the high volume of concrete, a carbon storing alternative would be impactful.
- Question: Where could ARPA-E funding have a meaningful impact?
 - Synthetic aggregates? Biological routes?
 Something else?

Mass Timber on the Rise

sustainability

nature

Buildings as a global carbon sink

Galina Churkina^{1,2*}, Alan Organschi^{3,4}, Christopher P. O. Reyer², Andrew Ruff³, Kira Vinke², Zhu Liu⁵, Barbara K. Reck¹, T. E. Graedel¹ and Hans Joachim Schellnhuber²

 Opportunity: Mass timber is at the heart of thinking about buildings as a carbon sink.

Questions:

- Are technical advances needed in mass timber?
- Where else are innovations in forestry products emerging?

Other Uses for Agriculture Residues

- Opportunity: From Chris Magwood: using just the straw waste in the country would offset all transportation emissions
- Questions:
 - Building materials and techniques using agricultural residues exist but are seldom implemented. What are the barriers?
 - How can we merge the carbon benefits of using agricultural residues with the convenience and comfort of modern materials?

New Uses for Carbon

Problems:

- Long-term carbon storage is needed.
- Methane pyrolysis may result in large amounts of solid carbon.
- Opportunity: Emerging technologies in carbon materials from greenhouse gasses could produce high carbon density storage.
- Questions: Can these materials be produced cheaply enough to find application in building materials?

Resins, Adhesives, and Matrix: the Connecting Thread

- Problem: Making materials from many of these sources require high-emissions resins, adhesives, or matrix.
- Opportunity: Focused effort in this area could benefit many different classes of materials.
- Questions:
 - What is already being done?
 - Where are new solutions most needed?

Polymers

- Problem: Polymers have become ubiquitous in buildings and are almost exclusively petroleum derived.
- Opportunity: Increasing awareness and demand for better products.

Questions:

- Is there a less toxic alternative to PVC?
- Can bioderived and recycled products compete?

Photo: Eric McLean, Unsplash

Day 2 Agenda

12:00 - 12:20 PM Day 1 Summary and Day 2 Objectives Marina Sofos, ARPA-E

12:20 - 12:30 PM Introduction to ARPA-E Tech-to-Market Madhav Acharya, ARPA-E

12:30 - 1:30 PM **Products to Market Panel**

Moderator: Josh Agenbroad, Rocky Mountain Institute Ryan Spies, Saint-Gobain Jerry Uhland, CalPlant Michael Dosier, bioMASON Kaustubh Pandya, Brick & Mortar Ventures

1:30 - 1:40 PM

Break

1:40 - 2:00 PM Uses of Agricultural and Forestry Products in Thermosetting Polymers Dean Webster, North Dakota State University

2:00 - 2:20 PM

Lignin-Based Carbon Materials – Potential High Value and High Volume Applications Zhiyong Cai, USDA Forest Products Laboratory

Day 2 Agenda (cont.)

2:20 – 2:40 PM Mycotecture: shaping the built environment with mycelium *Christopher Maurer, redhouse*

3:00 – 3:15 PM	Break
3:15 – 4:30 PM	Breakout Sessions Day 2
4:30 – 5:00 PM	Report out and Closing Remarks Marina Sofos, ARPA-E

Today's Breakouts

Other Materials

Facilitator: Doug Wicks

Notetaker: Kalena Stovall

Moderator: Christina Chang

Facilitator: Marc von Keitz

Wood/Purpose Grown Materials

Notetaker: Dave Lee

Moderator: Emily Yedinak

Notetaker: Rose Cox-Galhotra

Carbon Materials

Moderator: Ian Robinson

Agricultural Residues

Facilitator: Dave Babson

Notetaker: Laura Demetrion

Moderator: Elizabeth Schoenfelt-Troein

Facilitator: Joe King

Notetaker: Kate Pitman

Moderator: Grace Ryan

More opportunities to engage with us

- **RFI just issued (closing on April 21 @ 5 pm ET), share with your networks!** https://arpa-e-foa.energy.gov/
 - For ideas not covered here, check out OPEN FOA https://arpa-e.energy.gov/open-2021
 - Virtual ARPA-E Summit May 24-27, 2021 https://www.arpae-summit.com/Home
 - Subscribe to the ARPA-E Newsletter

https://arpa-e.energy.gov/news-and-media/newsletter

"We shape our buildings; thereafter, our buildings shape us."

-Winston Churchill

THANK YOU!

Marina Sofos, Madhav Acharya Advanced Research Projects Agency-Energy

> Kate Pitman, Kalena Stovall Booz Allen Hamilton

