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IMPROVING THE SUSTAINABILITY OF BIOMASS SORGHUM

Soil nitrous oxide (N,O) emissions from sorghum fields are comparable to those from maize fields despite
receiving half the fertilizer nitrogen (N) inputs.
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OPPORTUNITIES TO REDUCE N,O EMISSIONS

There are many points in the soil N cycle where microbial processes can be manipulated to reduce soil N,O emissions.
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REDUCING RELIANCE ON FERTILIZER NITROGEN INPUTS

Biological N fixation can supply N from the atmosphere, and soil N mineralization can supply N from soil
organic matter.
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REDUCING RELIANCE ON FERTILIZER NITROGEN INPUTS

Arbuscular mycorrhizal fungi can supply soil N to plants, serving as an important N source particularly in the

absence of fertilizer N inputs.
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REDUCING RELIANCE ON FERTILIZER NITROGEN INPUTS

Total soil N content declined in surface soils (0-30 cm depth) after 8 years of unfertilized miscanthus cultivation at
the University of Illinois Energy Farm, suggesting that soil N cannot be sustained as an N source in the long-term.
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INHIBITING NITRIFICATION

Nitrification produces nitrate that is susceptible to N,O production via denitrification, and it can also produce
N,O as a byproduct.
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Synthetic nitrification inhibitors can effectively reduce soil N,O emissions but the unpredictable yield benefits
do not justify the cost to most farmers.
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INHIBITING NITRIFICATION

Biological nitrification inhibition (BNI) can occur via root exudates that inhibit various enzymatic steps in
nitrification (and denitrification).
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Wild grass genes encoding for biological nitrification inhibition (BNI) transferred into wheat suppressed the

ammonia oxidizer community and potential soil N,O emissions.
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INHIBITING NITRIFICATION

We detected biological nitrification inhibition in biomass sorghum fields only in the mid-growing season,
estimated from the difference in potential nitrification rates between bulk and rhizosphere soil.
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INHIBITING NITRIFICATION

DayCent model simulations suggest that BNI would have little effect on cumulative annual nitrification rates
and soil N,O emissions at the Energy Farm due to the onset of BNI after peak nitrification.
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SUPPRESSING DENITRIFICATION

Denitrification reduces nitrate to gaseous end-products of nitrous oxide and dinitrogen.
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SUPPRESSING DENITRIFICATION

Denitrification reduces nitrate to gaseous end-products of nitrous oxide and dinitrogen.
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SUPPRESSING DENITRIFICATION

The “hole-in-the-pipe” model suggests that denitrification-derived N,O emissions can be decreased by
suppressing overall rates of denitrification and/or reducing the leakiness of the denitrification process.
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SUPPRESSING DENITRIFICATION

Biochar suppresses denitrification potential.
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SUPPRESSING DENITRIFICATION

Biochar suppresses denitrification potential, but it also
stimulates nitrification in fertilized soils.
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SUPPRESSING DENITRIFICATION

Biochar decreased cumulative growing season N,O emissions, but when combined with N fertilization, it
increased N,O emissions in the early growing season when nitrification peaks.
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SUPPRESSING DENITRIFICATION

Dissimilatory nitrate reduction to ammonium (DNRA) is an anaerobic microbial process that returns inorganic
N from nitrate to ammonium, contributing to N retention in the soil.
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SUPPRESSING DENITRIFICATION

The diversity in harboring nrfA leads to DNRA function at both high and
low soil moisture, suggesting potential to enhance DNRA to directly
compete with denitrification or to suppress denitrification by depleting

the soil nitrate pool.
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ENHANCING N,O REDUCTION

Nitrous oxide reduction completes the N cycle by returning reactive N back to the inert form of N,.
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ENHANCING N,O REDUCTION

The “hole-in-the-pipe” model suggests that denitrification-derived N,O emissions can be decreased by
suppressing overall rates of denitrification and/or reducing the leakiness of the denitrification process.
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ENHANCING N,O REDUCTION

Increased soil pH from basalt amendments can enhance the activity of the N,O reductase enzyme, NosZ.
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ENHANCING N,O REDUCTION

The relatively recent discovery of Clade Il NosZ which has more functional diversity than Clade | NosZ
expands the environmental contexts in which N,O reduction can occur, beyond denitrification.




ENHANCING N,O REDUCTION

Clade Il N,O reducers are generally more abundant in
soil than Clade I N,O reducers, but we still have poor
understanding of conditions controlling Clade Il NosZ

function.
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OPPORTUNITIES TO REDUCE N,O EMISSIONS

The major challenges include accounting for long-term sustainability, considering effectiveness in the environment,
and isolating microbes with the desired functional capabilities.
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A CAUTIONARY ENDING

High spatial variation in soil N,O emissions challenges
our ability to evaluate the effectiveness of any
technologies.

Zhang, Eddy, et al., Submitted to Nature Geoscience
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