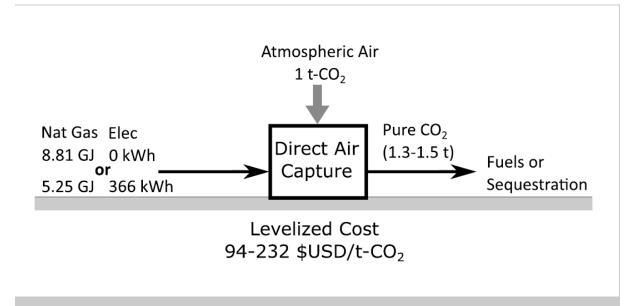


Direct air capture (DAC) of CO₂ using building HVAC System

Kashif Nawaz

Section Head (Building Technologies Research)
Sub-program manager (Cross-sector Technologies)

February 28, 2023



Motivation

- Direct Air Capture (DAC)
 is a critical framework for
 decarbonizing the energy sector
- Higher capital and operational costs are major barriers for the implementation
- An extensive amount of energy associated with the regeneration process

How do we **overcome barriers** associated with higher cost and extensive regeneration energy?

Motivation

- There are over 120M buildings (residential ~114M, commercial ~6M)
- Existing building equipment moves large amounts of air (blowers and fans)
- Large amount of low-grade heat provide an opportunity for onsite utilization

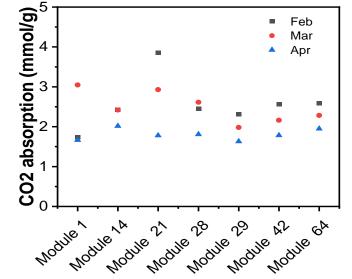
A multifunctional approach combining DAC to air conditioning/thermal management can provide a potential solution: Distributed Direct Air Capture (DAC)

Technical approach

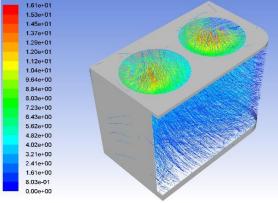
- Highly modular and scalable technology
- Distributed deployment with minimal cost (capital and operation)
- Deployment issues (integration, control, etc.)
- Compatible materials development

Materials development

Platform modification



System integration


Deployment 1 DAC integrated in rooftop packaged unit

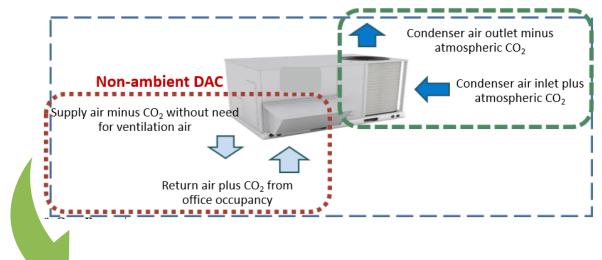
- Experimentation for performance evaluation over an extended period
- Data analysis to evaluate the impact of weather condition
- Evaluation of impact on the primary operation of system

Experimental data for extended tests

12.5-ton capacity packaged rooftop units for retrofitting with DAC

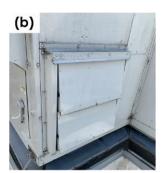
Velocity profile leads to non-uniform flow rate

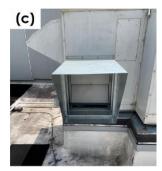
Demonstration of ambient DAC



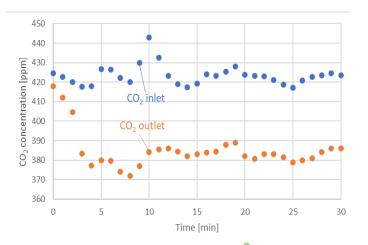
Ambient DAC

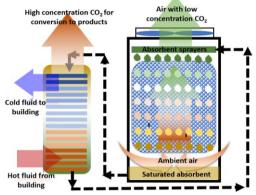
Deployment 2 DAC Integrated to make-up air unit


- Return air from building has a higher CO₂ concentration (800-2,000 ppm)
- Experiments are in progress for the past 5 months
- Potential implications for tight envelopers (reduced ventilation)


DAC can lead to improved indoor air quality in buildings (schools, restaurants)

Demonstration of non-ambient DAC



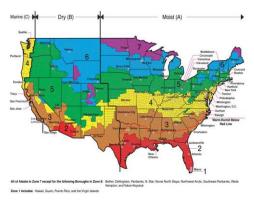


Deployment 3 Cooling towers retrofitted with DAC

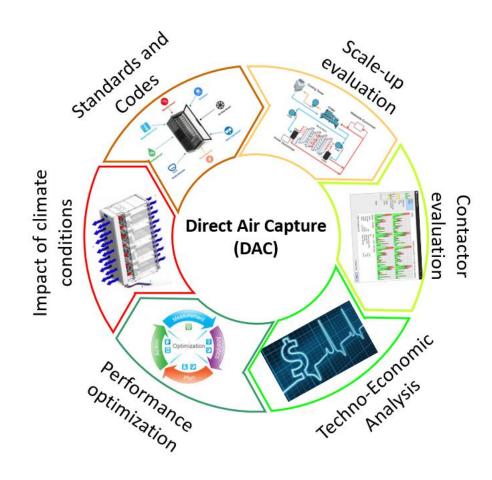
- Cooling towers (direct and indirect evaporative cooling) are important for thermal management
- More than 250,000 installations for large-capacity cooling towers (Baltimore Aircoil Company)
- Simultaneous leverage of fluids movement and waste heat for regeneration

Preliminary experimental data

System integration (multi-functional platform)



Cooling towers have been used for thermal management


Development of Capabilities and Facilities

DAC in various climate zones

National climate data

Materials characterization

Contactor performance evaluation

Initial developments have resulted in one-of-their-kind facilities. ORNL can test any DAC technology at-scale under any climate condition National Laboratory | BUILDING TECHNOLOGIES RESEARCH AND INTEGRATION CENTER

Concluding Remarks

- Retrofitting is a first step for realization of DAC integrated to HVAC system.
- Further modifications can lead to highly efficient solutions.
- Development of compatible materials and system configurations are critical.
- Any sustainable solution requires energy efficient regeneration strategy.
- CO₂ storage or transmission and utilization are obvious challenges.

Acknowledgements

- ORNL (Research staff, A&Cs, technicians and management)
- Fossil Energy and Carbon Management Office
- ORNL Laboratory Directed Research & Development (Transformational Decarbonization Initiative- TDI)
- Building Technologies Office
- ARPA-e

