FASTEST PATH TO ZERO

UNIVERSITY OF MICHIGAN




CONTEXT




WHAT DO WE WANT IN OUR FUTURE?

*  Water purification

* Sanitation * Clean

. Irrigqtion - Affordable

* Heating & * Resilient
air conditioning * Equitable

* Vaccinations
*  Pharmaceuticals
* Homes Innovation: Not Limitation



ENERGY REIMAGINED

Maximizing energy utilization, generator profitability, and grid reliability and resilience through novel
systems integration and process design

Today
Electricity-only focus

Potential Future Energy System
Integrated grid system that leverages contributions from
nuclear fission beyond electricity sector
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Processes = Clean Water




EXISTING COMMERCIAL NUCLEAR REACTORS

Footprint
Number in operation: 98 in U.S. g .
Timeframe: Builtin the 1950s-1980s
',‘ 1,500 acres
Products: Electricity ! (current fleet)
Megawatts: 1,000+ megawatts ]
Customers: Large utilities ,
Emergency zone: 10 miles \‘ A
Construction: Custom built on site / 50acres .
.\ (SMRs)
Scalability: Difficult due to size and cost . R .

S e ST

Less than an Acre
(Micro Reactors)

Applications:
Baseload electricity; 24/7

Did you know?

In November 2018, the Union of Concerned Scientists recommended
federal and state governments adopt policies to preserve the
low-carbon electricity the current fleet of nuclear reactors provides.




TRAJECTORY OF ATOMS FOR PEACE
GENERATION
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2021 Advanced Nuclear Map
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ENERGY TECHNOLOGY COMPLEXITY

THREE MILE ISLAND ACCIDENT

TMI-1 shutdown at the time.

« Non-routine maintenance practice

* Violation of an NRC rule

« Design Flaw

The accident progressed faster than the
humans responded




ENERGY TECHNOLOGY COMPLEXITY
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Tightly coupled systems can
fail fast and in unanticipated
ways

CHRIS CLEARFIELD &




COMMUNITY APPROPRIATENESS

A first entertainment use of radiation-
induced mutant creatures

For they shall inherit the earth...sooner than you think!

H.G.WELLS’
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SYSTEM-INFORMED DECISION-MAKING

Exhibit 4 — Mix of Federal Expenditures for Each Energy Source

M Tax Policy MRegulation MR&D M Market Activity B Gov't Services M Disbursements
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Expenditures for nuclear need
better balance between R&D
and tax policy




2015/2016 PIVOT

The 2015/2016 Pivot:

Research

GAIN
NRIC
ARPA-E

Legislation & Policy

NEIMA/NEICA

ARDP

NGOs (Third Way, CATF,
BTI, Good Energy
Collective, NIA, Global
Nexus Initiative, Energy
for Humanity)

Education & Advocacy

Nuclear Reimagined
Nuclear Energy
Bootcamp

Fastest Path to Zero

Figure 3: Nuclear Plants Closing in Restructured States
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Advanced Reactor Companies




“There are decades where nothing happens; and there are weeks where
decades happen.”

— Vladimir llyich Lenin

No implied support for Lenin or anything he did except the quote



FUEL USAGE




Uranium 95.6%
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Tokyo Institute of Technology

Transmutation:
Use neutron
probabilities to
create shorter -
lived isotopes

(https:// nuclearstreet.com/nuclear_power_industry_news/b/nuclear_power_news/archive/2017/11/14/researchers-in-japan-

propose-nuclear-waste-reduction-techniqgue-111401



Uranium
Mining

Conversion &
Enrichment

Minor Actinides 0.1%
lutonium 0.9%

Uranium 95.6%

Stable

Fission 10ng-lived 18&Tc 0.1%
Products 0
e \ s & Sr0.3%
her Long-lived
Fission Products 0.1%

Geologic
Repository

Multiple Fuel Types?

/

Fuel
Fabrication

LWRs or
Advanced
Reactors

Wet & Dry
Storage

Separations Fuel Fabrication

Waste Forms (FPs + losses)




FUEL




FUEL TYPES

END CAP
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Fuel-clad system is designhed to

= Produce and transfer heat to the coolant while
= Preventing fission products from reaching the coolant




FUEL ENVIRONMENT

Interactive Phenomena Operating in Fuel during Irradiation

F.P. Swelling —» Fuel - Clad Gap —» PCMI
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FUTURE




MOTIVATION

Build nuclear fuels to:

* Optimize resource utilization

* Minimize product lifecycle waste

* Minimize cost

* Simplify manufacturability

* Maximize operational lifetime while minimizing failures/eliminate
failure mechanisms

 Maximize social acceptance

But these goals were the same 70 years ago so what is hew




215" CENTURY

We can now notionally:

Build through additive manufacturing (fuel “chips” by design)
Embed designer sensors

Build digital twins

Use artificial intelligence

Design structures to simplify reprocessing

Connect with community members during the design phase (TRISO
Versus pin)

Craft the associated policy levers
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TRAJECTORY OF ATOMS FOR PEACE
GENERATION
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