Blog Posts
Part of ARPA-E’s mission is to overcome long-term and high-risk technological barriers in the development of energy technologies that reduce imports, improve efficiency, and reduce emissions. The Rebellion Photonics and University of Notre Dame projects focus on the latter piece of the mission, working to turn emissions reduction ideas into reality.

Blog Posts
ARPA-E recently released a funding opportunity, Systems for Monitoring and Analytics for Renewable Transportation Fuels from Agricultural Resources and Management (SMARTFARM), to develop innovative new technologies for measuring emissions from agricultural feedstock production. We sat down with Dr. David Babson, SMARTFARM’s Program Director, to learn about his vision and the technologies of interest for Phase 2 of the program.

Blog Posts
Recently, we had an opportunity to sit down with Dr. Jack Lewnard, program director for ARPA‑E REcyle Underutilized Solids to Energy (REUSE) program to discuss the transformation from plastic and paper trash to energy treasure.

Blog Posts
We’re excited to announce a new partnership with DoD’s Environmental Security Technology Certification Program (ESTCP) to further demonstrate and validate ARPA-E derived technologies at DoD installations across the country. ESTCP targets DoD’s urgent environmental and installation energy needs to improve Defense readiness, resilience and costs. Projects under this partnership will conduct demonstrations to validate the performance and operational costs of promising ARPA-E technologies and provide valuable data needed for end-user acceptance and to accelerate the transition of these technologies to commercial use.

Blog Posts
We recently sat down with Dr. Babson to discuss how he became interested in energy, his journey serving in various roles across the federal government, and the future of bioenergy and agricultural systems.

Blog Posts
We sat down with ARPA-E Program Director, Dr. Rachel Slaybaugh, as she reflected on her experience attending the very first ARPA-E Energy Innovation Summit Student Program back in 2010.

Slick Sheet: Project
More information on this project is coming soon!

Slick Sheet: Project
New England Research is developing a method for environmentally safe self-propagating fractures to stimulate geologic hydrogen. The team will monitor the creation of fracture networks and how fractures can propagate within a rock under a variety of physical or mechanical stimuli. Optimizing the self-propagating fractures can dramatically increase reaction rates in iron-rich host rocks to produce economic amounts of hydrogen.

Slick Sheet: Project
Eden GeoPower is developing a subsurface battery technology that takes advantage of the reversible chemical reactions of iron in ubiquitous iron-rich geologic formations. The subsurface battery would operate as a long-duration energy storage solution by utilizing excess grid energy to reduce spent iron into usable iron for multiple cycles of hydrogen production.

Slick Sheet: Project
Lawrence Berkley National Laboratory is developing a cyclic injection strategy to create fractures, stimulate geologic hydrogen production, and ultimately transport the produced hydrogen back to the surface. The approach involves multiscale numerical modeling, laboratory tests, and field characterization to develop and test the proposed technology using rock samples from Montana and other sites. Through high pressure, high temperature testing, the system will be optimized for hydrogen flow and maximum extraction.