Biofuels from Sorghum

Chromatin
Plant-Based Sesquiterpene Biofuels
Graphic of Chromatin's technology
Program: 
ARPA-E Award: 
$7,317,589
Location: 
Chicago, IL
Project Term: 
01/01/2012 to 12/31/2016
Project Status: 
ACTIVE
Technical Categories: 
Critical Need: 
Biofuels offer renewable alternatives to petroleum-based fuels that reduce net greenhouse gas emissions to nearly zero. However, traditional biofuels production is limited not only by the small amount of solar energy that plants convert through photosynthesis into biological materials, but also by inefficient processes for converting these biological materials into fuels. Farm-ready, non-food crops are needed that produce fuels or fuel-like precursors at significantly lower costs with significantly higher productivity. To make biofuels cost-competitive with petroleum-based fuels, biofuels production costs must be cut in half.
Project Innovation + Advantages: 
Chromatin will engineer sweet sorghum--a plant that naturally produces large quantities of sugar and requires little water--to accumulate the fuel precursor farnesene, a molecule that can be blended into diesel fuel. Chromatin's proprietary technology enables the introduction of a completely novel biosynthetic process into the plant to produce farnesene, enabling sorghum to accumulate up to 20% of its weight as fuel. Chromatin will also introduce a trait to improve biomass yields in sorghum. The farnesene will accumulate in the sorghum plants--similar to the way in which it currently stores sugar--and can be extracted and converted into a type of diesel fuel using low-cost, conventional methods. Sorghum can be easily grown and harvested in many climates with low input of water or fertilizer, and is already planted on an agricultural scale. The technology will be demonstrated in a model plant, guayule, before being used in sorghum.
Impact Summary: 
If successful, Chromatin's project will enable large-scale production of renewable biofuels from crops that do not compete with food production.
Security: 
The transportation sector accounts for nearly all of our petroleum imports. Providing an advanced biofuels alternative to petroleum will allow the U.S. to reduce these imports, improving our energy independence.
Environment: 
More than 25% of all greenhouse gas emissions in the U.S. come from the transportation sector. Because plants naturally absorb carbon dioxide as they grow, greenhouse gas emissions from biofuels are less than half that of petroleum fuels.
Economy: 
The U.S. imports nearly $1 billion in petroleum each day, accounting for the single largest factor in our trade balance with the rest of the world. Biofuels can be produced domestically, allowing us to keep more dollars at home.
Contacts
ARPA-E Program Director: 
Dr. Jonathan Burbaum
Project Contact: 
Dr. David Jessen
Partners
Allylix
Intrexon
Kansas State University
The Ohio State University