CO2 Capture Using Electrical Energy

Massachusetts Institute of Technology (MIT)
Electrochemically Mediated Separation for Carbon Capture and Mitigation
Graphic of MIT's technology
Program: 
ARPA-E Award: 
$1,000,000
Location: 
Cambridge, MA
Project Term: 
07/01/2010 to 01/31/2013
Project Status: 
ALUMNI
Technical Categories: 
Critical Need: 
Coal-fired power plants provide nearly 50% of all electricity in the U.S. While coal is a cheap and abundant natural resource, its continued use contributes to rising carbon dioxide (CO2) levels in the atmosphere. Capturing and storing this CO2 would reduce atmospheric greenhouse gas levels while allowing power plants to continue using inexpensive coal. Carbon capture and storage represents a significant cost to power plants that must retrofit their existing facilities to accommodate new technologies. Reducing these costs is the primary objective of the IMPACCT program.
Project Innovation + Advantages: 
MIT and Siemens Corporation are developing a process to separate CO2 from the exhaust of coal-fired power plants by using electrical energy to chemically activate and deactivate sorbents--materials that absorb gases. The team found that certain sorbents bond to CO2 when they are activated by electrical energy and then transported through a specialized separator that deactivates the molecule and releases it for storage. This method directly uses the electricity from the power plant, which is a more efficient but more expensive form of energy than heat, though the ease and simplicity of integrating it into existing coal-fired power plants reduces the overall cost of the technology. This process could cost as low as $31 per ton of CO2 stored.
Impact Summary: 
If successful, MIT's method would use electrical energy to store CO2 at lower cost than current technologies, limiting the increased cost of carbon capture and storage for coal-fired power plants.
Security: 
Enabling continued use of domestic coal for electricity generation will preserve the stability of the electric grid.
Environment: 
Carbon capture technology could prevent more than 800 million tons of CO2 from being emitted into the atmosphere each year.
Economy: 
Improving the cost-effectiveness of carbon capture methods will minimize added costs to homeowners and businesses using electricity generated by coal-fired power plants for the foreseeable future.
Contacts
ARPA-E Program Director: 
Dr. Karma Sawyer
Project Contact: 
Prof. Alan Hatton
Partners
Siemens Corporation