High Surface-Area CO2 Sponge

Oak Ridge National Laboratory (ORNL)
High Performance CO2 Scrubbing Based on Hollow Fiber-Supported Designer Ionic Liquid Sponges
Graphic of ORNL's technology
Program: 
ARPA-E Award: 
$887,609
Location: 
Oak Ridge, TN
Project Term: 
07/01/2010 to 03/15/2013
Project Status: 
ALUMNI
Technical Categories: 
Critical Need: 
Coal-fired power plants provide nearly 50% of all electricity in the U.S. While coal is a cheap and abundant natural resource, its continued use contributes to rising carbon dioxide (CO2) levels in the atmosphere. Capturing and storing this CO2 would reduce atmospheric greenhouse gas levels while allowing power plants to continue using inexpensive coal. Carbon capture and storage represents a significant cost to power plants that must retrofit their existing facilities to accommodate new technologies. Reducing these costs is the primary objective of the IMPACCT program.
Project Innovation + Advantages: 
The team from ORNL and Georgia Tech is developing a new technology that will act like a sponge, integrating a new, alcohol-based ionic liquid into hollow fibers to capture CO2 from the exhaust produced by coal-fired power plants. Ionic liquids--salts that exist in liquid form--are promising materials for carbon capture and storage, but their tendency to thicken when combined with CO2 limits their efficiency and poses a challenge for their development as a cost-effective alternative to current-generation solutions. Adding alcohol to the mix limits this tendency to thicken in the presence of CO2 but can also make the liquid more likely to evaporate, which would add significantly to the cost of CO2 capture. To solve this problem, ORNL is developing new classes of ionic liquids with high capacity for absorbing CO2. ORNL's sponge would reduce the cost associated with the energy that would need to be diverted from power plants to capture CO2 and release it for storage.
Impact Summary: 
If successful, ORNL's sponge would represent an efficient and cost-effective technological development that enables significant reductions in greenhouse gas emissions while helping position the U.S. as the leader in advanced energy technologies.
Security: 
Enabling continued use of domestic coal for electricity generation will preserve the stability of the electric grid.
Environment: 
Carbon capture technology could prevent more than 800 million tons of CO2 from being emitted into the atmosphere each year.
Economy: 
Improving the cost-effectiveness of carbon capture methods will minimize added costs to homeowners and businesses using electricity generated by coal-fired power plants for the foreseeable future.
Contacts
ARPA-E Program Director: 
Dr. Karma Sawyer
Project Contact: 
Dr. Sheng Dai
Partners
Georgia Tech