Probability-Based Software for Grid Optimization

Sandia National Laboratories
Improved Power System Operations Using Advanced Stochastic Optimization
Sandia logo
Program: 
ARPA-E Award: 
$2,999,151
Location: 
Albuquerque, NM
Project Term: 
04/01/2012 to 09/30/2014
Project Status: 
ACTIVE
Technical Categories: 
Critical Need: 
The U.S. electric grid is outdated and inefficient. There is a critical need to modernize the way electricity is delivered from suppliers to consumers. Modernizing the grid's hardware and software could help reduce peak power demand, increase the use of renewable energy, save consumers money on their power bills, and reduce total energy consumption--among many other notable benefits.
Project Innovation + Advantages: 
Sandia National Laboratories is working with several commercial and university partners to develop software for market management systems (MMSs) that enable greater use of renewable energy sources throughout the grid. MMSs are used to securely and optimally determine which energy resources should be used to service energy demand across the country. Contributions of electricity to the grid from renewable energy sources such as wind and solar are intermittent, introducing complications for MMSs, which have trouble accommodating the multiple sources of price and supply uncertainties associated with bringing these new types of energy into the grid. Sandia's software will bring a new, probability-based formulation to account for these uncertainties. By factoring in various probability scenarios for electricity production from renewable energy sources in real time, Sandia's formula can reduce the risk of inefficient electricity transmission, save ratepayers money, conserve power, and support the future use of renewable energy.
Impact Summary: 
If successful, Sandia's software would encourage the spread of renewable energy throughout the electric grid by accounting for the uncertainties associated with its pricing and production.
Security: 
A more efficient, reliable grid would be more resilient to potential disruptions from failure, natural disasters, or attack.
Environment: 
Enabling increased use of wind and solar power would result in a substantial decrease in carbon dioxide emissions in the U.S.--40% of which are produced by electricity generation.
Economy: 
A more efficient and reliable grid would help protect U.S. businesses from costly power outages and brownouts that stop automated equipment, bring down factories, and crash computers.
Contacts
ARPA-E Program Director: 
Dr. Timothy Heidel
Project Contact: 
Jean-Paul Watson
Partners
Alstom Grid
University of California Davis
Iowa State University (SNL Lead Sub)