Temperature-Regulated Batteries

Oak Ridge National Laboratory (ORNL)
Temperature Self-Regulation for Large-Format Li-Ion cells
Image of ORNL's technology
Program: 
ARPA-E Award: 
$1,000,000
Location: 
Oak Ridge, TN
Project Term: 
10/01/2012 to 09/30/2014
Project Status: 
ACTIVE
Critical Need: 
Today's electric vehicle batteries are expensive and prone to unexpected failure. Batteries are complex systems, and developing techniques to cost-effectively monitor and manage important performance measures while predicting battery cell degradation and failure remains a key technological challenge. There is a critical need for breakthrough technologies that can be practically deployed for superior management of both electric vehicle batteries and renewable energy storage systems.
Project Innovation + Advantages: 
ORNL is developing an innovative battery design to more effectively regulate destructive isolated hot-spots that develop within a battery during use and eventually lead to degradation of the cells. Today's batteries are not fully equipped to monitor and regulate internal temperatures, which can negatively impact battery performance, life-time, and safety. ORNL's design would integrate efficient temperature control at each layer inside lithium ion (Li-Ion) battery cells. In addition to monitoring temperatures, the design would provide active cooling and temperature control deep within the cell, which would represent a dramatic improvement over today's systems, which tend to cool only the surface of the cells. The elimination of cell surface cooling and achievement of internal temperature regulation would have significant impact on battery performance, life-time, and safety.
Impact Summary: 
If successful, ORNL's temperature-regulated Li-Ion cells would increase cooling efficiency and result in better battery performance at substantial system-level cost savings.
Security: 
Advances in energy storage management could reduce the cost and increase the adoption of electric vehicles and renewable energy storage technologies, which in turn would reduce our nation's dependence on foreign sources of energy.
Environment: 
Improving the reliability and safety of electric vehicles and renewable energy storage facilities would enable more widespread use of these technologies, resulting in a substantial reduction in carbon dioxide emissions.
Economy: 
Enabling alternatives to conventional sources of energy could insulate consumers, businesses, and utilities from unexpected price swings.
Contacts
ARPA-E Program Director: 
Dr. Ilan Gur
Project Contact: 
Dr. Hsin Wang
Partners
Farasis Energy Inc.