arpa.e

Workshop: How can we achieve a circular and domestic EV battery supply chain?

> Dr. Laurent Pilon Program Director


Acknowledgement to the team

ARPA-E team member present at the workshop

Dr. Apoorv Agarwal Dr. Halle Cheeseman Dr. Julia Greewald T2M advisor **Program Director** Fellow

Jacob Tidwell Summer Scholar

Dr. Philseok Kim **Program Director**

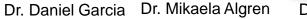
Dr. Jack Lewnard **Program Director**

Dr. Marina Sofos Program Director

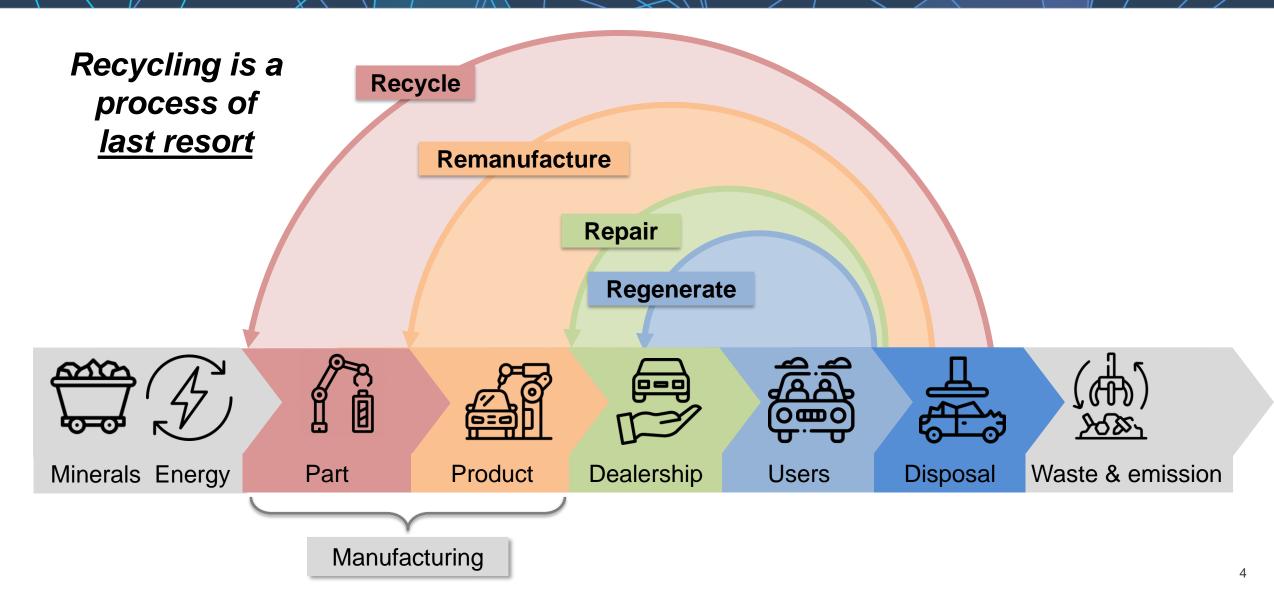
Dr. David Tew Deputy Director for Tech.

Technical advisors - Booz-Allen-Hamilton

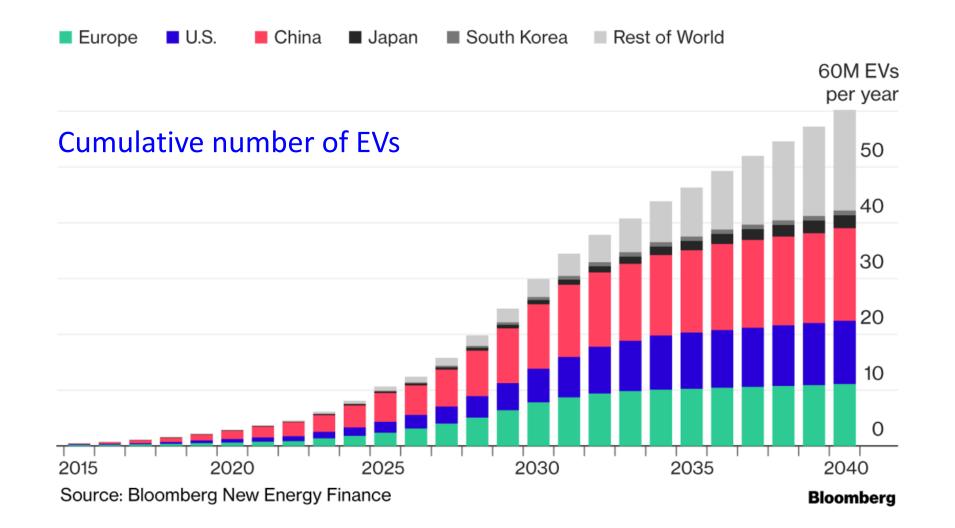
Dr. Chananate Uthaisar


Dr. Kelly Rudman

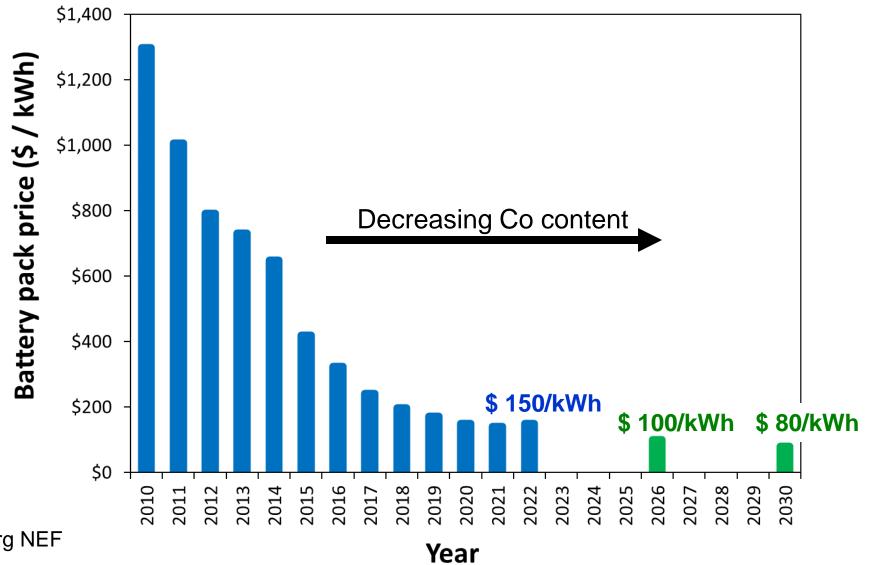
Dr. Kate Pitman

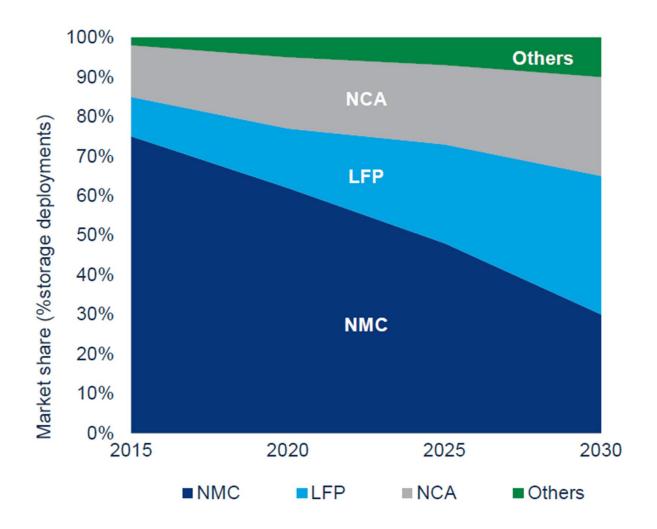

Nancy Hicks Sr. Event Manager

Linear vs. circular economy


- Linear economy
 - Take, make, use, dispose
- Circular economy*
 - "An economy that uses <u>system-level approach</u> and involves industrial processes and economic activities that are <u>restorative or regenerative by design</u>."
 - "A circular economy <u>reduces material use, redesigns materials, products, and services</u> to be less resource intensive, and <u>recaptures "waste" as a resource</u> to manufacture new materials/products."
- Personal reflection and questions
 - It makes more sense to talk about circular supply chains
 - Limits of the linear economy are the most apparent in the EV revolution
 - Globalization of supply chains has shown its limits (COVID, War in Ukraine)

⇒ How can we achieve a circular and domestic EV battery supply chain?


Circularity is more than recycling... it helps recover manufacturing value!


EV battery market is poised for substantial growth

Lithium-ion battery price (\$/kWh) keeps going down

The quest for cheaper batteries

- Price considerations
 - parity EV vs. ICE vehicles: \$100/kWh
 - 2010 battery price: \$1,000/kWh
 - 2022 average battery price: \$152/kWh
 - LFP market share is growing
 - 40% market share in 2022
 - Cheaper than NMC batteries by 20%

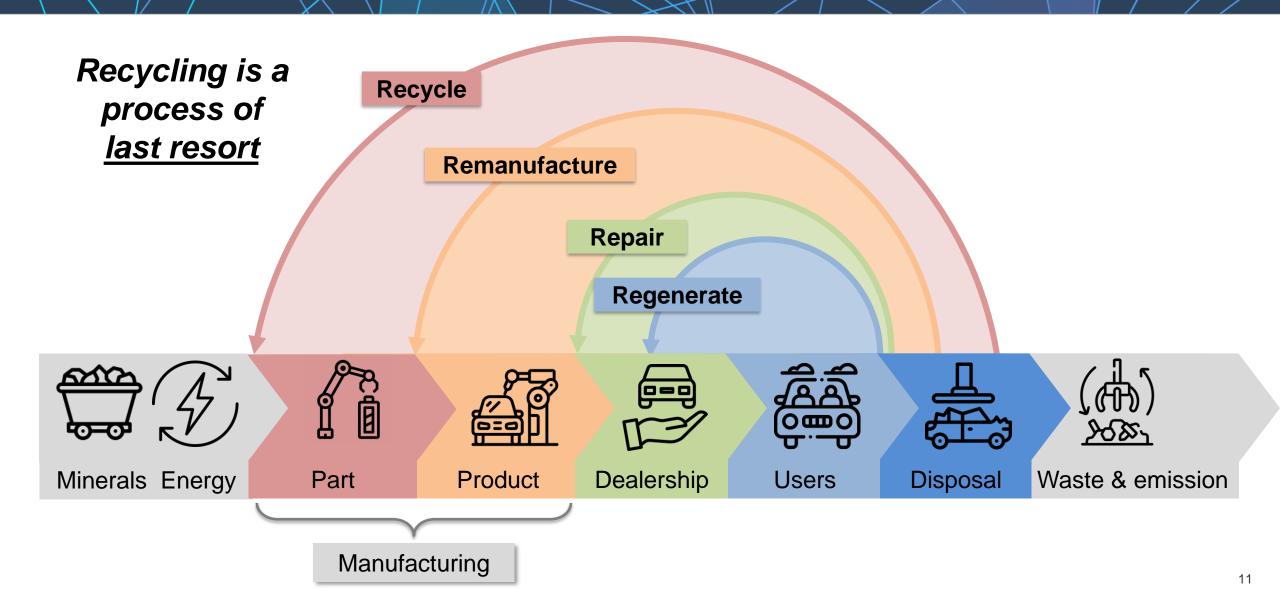
As the price of batteries decreases so does the value of recovered minerals

For a 60 kWh lithium-ion battery

		NMC622 Ni (60%) Mn (20%) Co (20%)	NMC811 Ni (80%) Mn (10%) Co (10%)	NCA Nickel cobalt aluminum oxide	LFP Lithium iron phosphate
	Lithium	6 kg	5 kg	6 kg	6 kg
cled	Cobalt	11 kg	5 kg	2 kg	0 kg
ecycled	Nickel	32 kg	39 kg	43 kg	0 kg
	Manganese	10 kg	5 kg	0 kg	0 kg
recycled	Graphite	50 kg	45 kg	44 kg	66 kg
	Aluminum	33 kg	30 kg	30 kg	44 kg
	Copper	19 kg	20 kg	17 kg	26 kg
	Steel	19 kg	20 kg	17 kg	26 kg
	Iron	0 kg	0 kg	0 kg	41 kg

Decreasing Co content

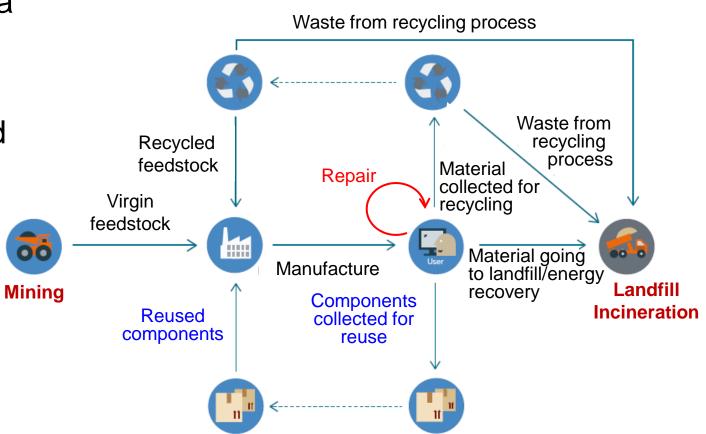
Who is going to recycle EV batteries?


China NCA Cost of recycling **NMC622** • 30-40% from transportation NMC811 LFP 20-30% from disassembly LMO South NCA Korea **NMC622** NMC811 LFP LMO US Direct NCA **NMC622** Hydrometallurgical NMC811 LFP Pyrometallurgical LMO -30.00 -20.00 10.00 20.00 -40.00 -10.00 0.00 30.00 40.00 Net recycling profit, \$-kWh⁻¹

Lander et al., iScience 24, 102787 (2021). DOI: 10.1016/j.isci.2021.102787

But fast forward in 10-20 years

Circularity is more than recycling... it helps recover manufacturing value!



Dr. Kelly Rudman

Material circularity index (MCI) to assess the circularity of a supply chain

Metrics: Material Circularity Index (MCI)*

- Metric to evaluate the circularity of a given product(s)
- Perform a mass balance (virgin and recycled materials and waste) accounting for product lifespan
- Values range from 0 to 1
 - MCI = 0 (completely linear)
 - MCI = 1 (completely circular)

Material Circularity Index (MCI)

- Inputs
 - Bill of Materials: type, amount, cost
 - Material sources: virgin, remanufactured, reused, recycled
 - Utility: how long specific product lasts as compared to similar types
 - Destination after use: landfill/incineration, recovery, remanufacture, reuse
 - Recycling: collection and efficiency
- Outputs
 - $\ 0 \leq MCI \leq 1$

Calculator from Thinkstep Anz

Material Circularity Indicator calculator

Utility based on		
(Select)	Longevity	
This product lasts:	5	Year
Typical product lasts:	5	Year
Utility of Product is	1	

MCI

			Input Materials			Output		
Component Name	Each (kg)	Quantity	Material Type	Source	% Regenerativ	Collection Rate	Destination	MCI
Pen Tube	0.0040	1	Plastics	Virgin		100%	Reuse	0.55
Ink Tube	0.0020	1	Plastics	Virgin		100%	Reuse	0.55
Nib	0.0002	1	Steel	Virgin				0.10
Lid	0.0010	1	Plastics	Virgin				0.10
Product Mass (kg)	0.00	72		1	1		1	0.48

MCI Assumptions

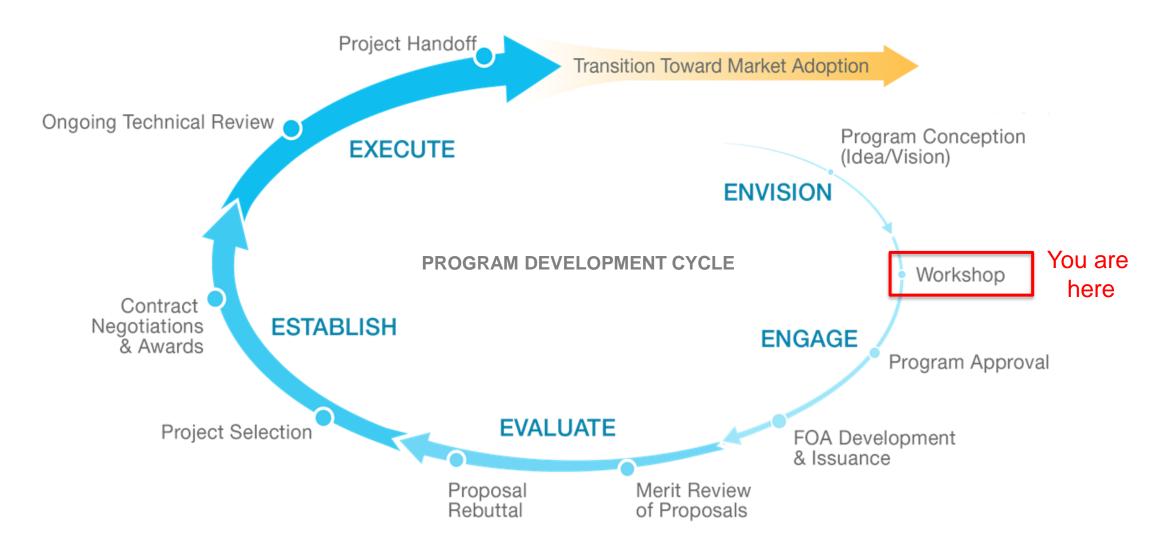
- General
 - Recovered materials have similar performances to new materials
 - No part of the product is consumed during use
 - All materials fall into 1 of 9 default categories and are treated the same
- Specific to battery supply chain
 - 180 kWh battery pack
 - Battery chemistry: NMC 622 or LFP
 - Collection rate: 100%
 - Recycling process: pyrometallurgy

MCI for battery packs

180 kWh NMC 622 battery pack

					Input Materials			Output Materials		
			Each				%	Collection		MCI
		Component Name	(kg)	Quantity	Material Type	Source	Regenerativ	Rate	Destination	
		Active Cathode Material	231.1183	1	Composites	Reman	90%	100%	Reman	0.96
	180 kWh pack	Graphite	149.7989		Natural Material	Virgin	90%	100%	Recycle	0.83
	~7776 cells	Carbon Black	15.6932	1	Natural Material	Virgin	90%	100%	Landfill	0.51
		Binder: PVDF	20.6865		Plastics	Virgin	0%	100%	Landfill	0.10
70-80 wt.%	9 Modules	Copper	114.8458		Natural Material	Reuse	90%	100%	Reuse	1.00
		Aluminum	59.9196		Aluminium	Reuse	90%	100%	Reuse	1.00
	Per module:	Electrolyte, LiPF6	15.6932	1	Composites	Virgin	50%	100%	nergy Recove	0.10
		Electrolyte, EC	44.9397	1	Composites	Virgin	50%	100%	nergy Recove	0.10
	864 cells	Electrolyte, DMC	44.9397		Composites	Virgin	50%	100%	nergy Recove	0.10
	12S72P	Plastic, PP	10.6999		Plastics	Virgin	50%	100%	Recycle	0.24
		Plastic, PE	2.8533		Plastics	Virgin	50%	100%	Recycle	0.24
		Pastic, PET	2.1400		Plastics	Virain	50%	100%	Recycle	0.24
20-30 wt.%	<pre>6 Electronic +Housing</pre>	Plastic housing	23.7776		Plastics	Reuse	50%	100%	Reuse	1.00
20-30 wt. /0		Metal Housing	237.7760		Steel	Reuse	90%	100%	Reuse	1.00
		Strap/busbar	213.9984	1	Natural Material	Reuse	90%	100%	Reuse	1.00
		Product Mass (kg)	1188.	88					L	0.86

Comparison of MCI between current and ideal circular practice

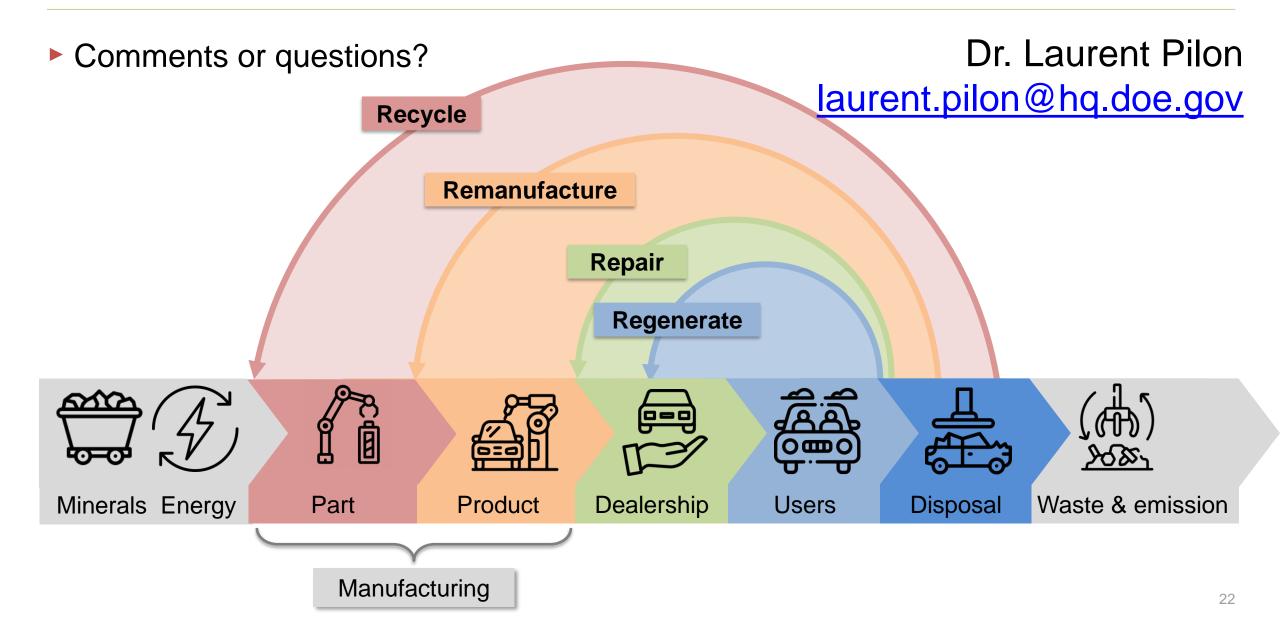

MCI for NMC (622) and LFP battery pack under varying conditions

Battery Chemistry	Pyrometallurgical recycling	Hydrometallurgical recycling	Circular supply chain (aspirational)		
NMC (622)	0.28-0.30	0.47-0.50	0.80-0.86		
LFP	0.26-0.29	0.44-0.48	0.75-0.82		

Note: MCI of the lead acid battery supply chain is approximately 0.7

This workshop

Technology acceleration model


Workshop objectives

- Inform ARPA-E on technologies needed to achieve a circular battery supply chain
 - Identify the market needs, the impact, and the obstacles
 - Present existing relevant technologies
 - Identify technological opportunities and obstacles
 - Define fair, quantitative, and ambitious metrics to assess different technologies
- Start creating a community focused on achieving a circular battery supply chain
 - Be engaged in all technical conversations: talks, panels, breakout sessions
 - Share your technical expertise and opinions
 - Listen and learn
 - Network and find partners that complement your strengths
 - Enjoy!

How are we going to achieve these objectives?

- Presentations
 - #1. Stating the Problems and the Opportunities
 - #2. Material, Design, and Manufacturing
- Fireside chats
 - #1: Disassembly, Remanufacturing, Second Use, Rejuvenation, and Recycling
 - #2. Circularity of Battery Supply Chain and Commercialization
- Breaks and networking
- Breakout sessions
 - #1. Challenges and Opportunities Along the Supply Chain
 - #2. Technical Solutions for Materials, Design, and Manufacturing
 - #3. Circularity of Battery Supply Chain and Commercialization
- Breakfast, lunch, and dinner
- Follow up conversations

Thank you for your attention

