

Centrifugal Mirror Fusion Experiment

BETHE Kickoff Virtual Workshop Aug. 11–12, 2020

C. A. Romero-Talamás, University of Maryland, Baltimore County A. B. Hassam, I. Abel, B. Beaudoin, T. Koeth, University of Maryland, College Park

Team members and roles

- Carlos A. Romero-Talamás, PI, UMBC/UMD Associate Professor, Mechanical Engineering.
 - Engineering Design, Experiment Design, Spectroscopy, B-dot probes.
- Adil B. Hassam, co-PI, UMD, Prof. Physics.
 - Lead Theory, Numerical Simulations, Comp. Support Teams Interface.
- ► Ian Abel, co-PI, UMD
 - Theory Support, Numerical Simulations, Support Teams Interface
- Brian L. Beaudoin, co-PI, UMD, Research Prof. at Inst. for Res. Appl. Physics
 - DAQ, High-speed imaging, Experimental Support, Safety.

- Timothy Koeth, co-PI, UMD Asst. Professor, Materials Science.
 - Insulator Design, Neutron Detectors, HV Design System, Safety.
- John Ball, Ugrad/Grad. Student, UMD
 - Insulator Design, Neutron Detectors, HV Design.
- Nathan Eschbach, Grad. Student, UMBC
 - Experiment Design, Magnets, B-dot probes, UHV.
- **Zachary Short**, Grad. Student, UMD
 - Spectroscopy, IDS
- Postdoc (TBD): Experiment Support, Data Analysis.

All team members will contribute to publications and outreach

High-level motivation and goals of the project

Motivation:

- Deliver a simple magnetic configuration that can scale to viable fusion power source.
- Innovative mirror configuration that suppresses loss-cone losses and stabilizes MHD instabilities, while allowing access to energy breakeven.

Goals:

- CMFX aims for T > 0.5 keV and $nT\tau$ > 10¹⁷ with H-H and D-D plasmas.
- High plasma impedance to sustain high T and high rotation velocity.
- Stable plasma duration 15 100 ms.

Major tasks (and technical risks), milestones, and desired project outcomes

- Engineering design for high mirror ratio, high voltage, and long pulse capacitor banks.
 - 100 kV transmission line.
 - 3 T mirror coils.
 - UHV system.
 - Neutron shielding for D-D plasmas.
- Design of insulator and plasma-facing surfaces.
 - UHV compatible insulators/metals.
 - High heat/particle load at insulators and electrodes.

- Diagnostics
 - Density: Interferometer
 - Ti: IDS, Te: TS (ONRL)
 - Impurity: spectrometer.
 - DD Neutrons: ³He, plastic scint.
 - Stability, momentum: B-dot, diamagnetic loops.

Key techno-economic metrics of the project

- Demonstration of long confinement times in a small, high-β plasma configuration. Expected to produce confinement times of up to ~100ms.
- Demonstrate efficient coupling of highvoltages to a plasma.
 - HV gear for rotation off-the-shelf (up to ~ 1 MV).
 - Plasma impedance increases with confinement time. *In theory, no additional heating required.*
- Demonstrate acceptable Plasma-Material interactions => low power losses, low upkeep costs.

Demonstrate confinement with low mirror ratio => accessible with conventional SC magnets.

