

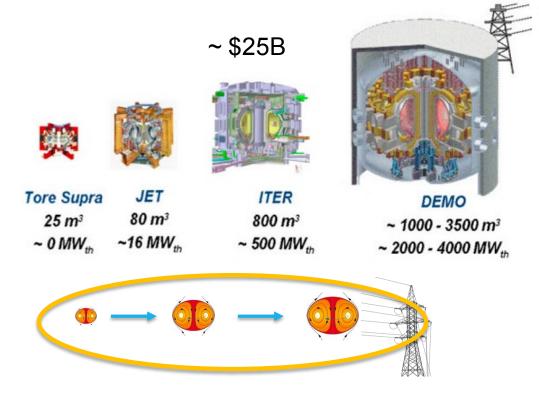
Demonstration of low-density, high-performance operation of sustained spheromaks and favorable scalability toward compact, low-cost fusion power plants

BETHE Kickoff Virtual Workshop Aug. 11–12, 2020

Dr. Christopher Hansen, University of Washington

Team members and roles

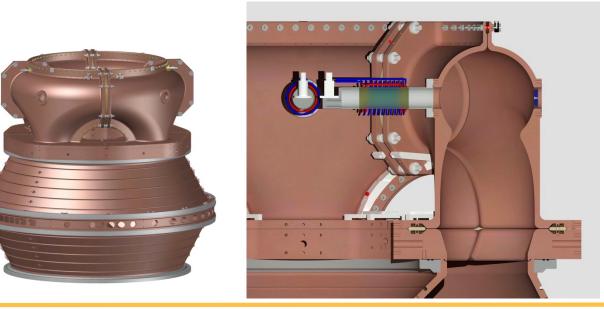
- Dr. Christopher Hansen, PI
- Dr. Aaron Hossack, Research Scientist
- Dr. Kyle Morgan, Research Scientist
- John Rogers, Lead Technician
- Jamie Coyne, Technician



Demonstrate efficient sustainment of compact spheromak plasmas with good energy confinement and reactor scalability

- Efficient sustainment of compact plasmas with good energy confinement
 - Improve on previous spheromaks using controlled 3D magnetic perturbations and inductive drivers
- Scalability of compact spheromak plasmas to economical fusion systems
 - Demonstrate compatibility of 3D drivers with path to reactor design points and requirements

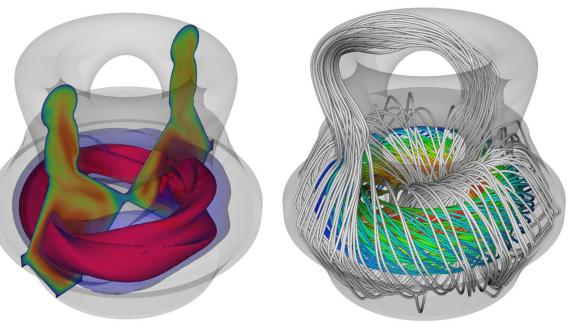
Lower both the development cost and final cost of fusion power generation


Compact, lower cost, faster!

Improve control of plasma density in experimental prototype (HIT-SIU) to demonstrate plasma heating/confinement

- Prior prototypes had limited density control requiring increasing power in time to "outrun" increasing density
- Significant improvements will be made through a new pre-ionized fueling system and modifications to passive density control components
- Control of plasma density allows time for plasma to heat and better use of available driver power

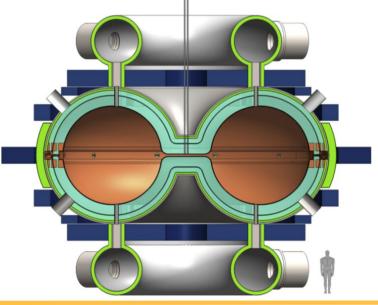
- Key risks:
 - Possibility of increased wall interactions near new fueling
 - Interference of driver circuits with pre-ionization system



Develop computational models to predict performance of future design points and demonstrate reactor-scale configurations

- Develop "blueprint to plasma" model for predicting the performance and behavior of inductively driven spheromak plasmas
 - 3D extended MHD simulations with plasma-coupled circuits (PSI-Tet)
- Demonstrate self-consistent 3D driven equilibria from prototype to reactor scale
 - Large spheromak plasma current is driven by a small injector current
 - Details of driver/spheromak connection are important

- Key risks:
 - xMHD may not contain all physics for "blueprint to plasma" model
 - Do equilibria exist at reactor scale with practical drivers?



Aim to demonstrate sufficient confinement during sustainment to exceed 100 eV and theoretical scalability toward a reactor

- Improvements to the small-scale prototype (HIT-SIU) designed to enable definitive demonstration of plasma heating during spheromak sustainment
 - Major barrier to all previous spheromak-based concepts
- Computationally explore scalability of concept to inform development path
 - Next-step experiments, high-fidelity from startup to flattop
 - Reactor scale, target plasma states to inform scoping/design

- Working closely with CTFusion to develop and refine low-cost fusion system designs, targeting:
 - Net-gain demonstration ~\$100M
 - Commercial reactor 100-1,000MW
 @ < 5 ¢/kWh LCOE

Thank you for your attention

Questions?

