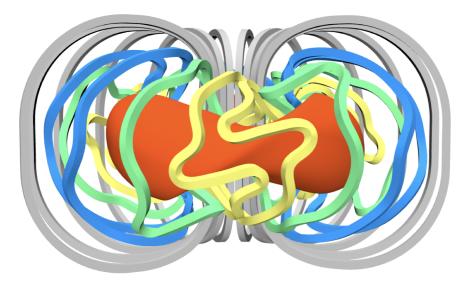


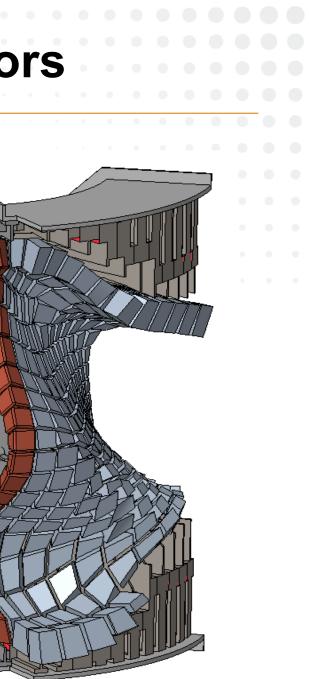
Stellarator Simplification using Permanent Magnets

BETHE Kickoff Virtual Workshop Aug. 11–12, 2020

PI: David Gates, Head of Advanced Projects, Princeton Plasma Physics Laboratory Co-PI: Robert Mercurio, President, SABR Enterprises Co-PI: Prof. David Maurer, Auburn University

Team members and roles

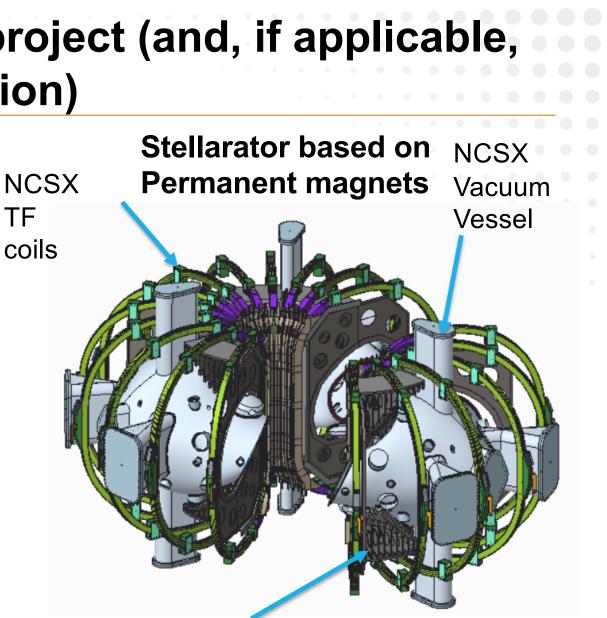

- PPPL Team Members
- ▶ PI (PPPL)
 - David Gates
- PPPL Chief Scientist
 - Mike Zarnstorff
- Staff Scientists
 - Ken Hammond
 - Caoxiang Zhu
- PPPL Engineers
 - Keith Corrigan (analysis and design)
 - Tom Brown (design)
 - Art Brooks (analysis)


- SABR Enterprises Team Members
- Co-PI SABR
 - Robert Mercurio (president, engineer)
- SABR engineer
 - Robert Lown
- Auburn University Team Members
- Auburn Co-PI Dave Maurer
- Auburn scientists
 - Greg Hartwell (Assoc. Prof.)
 - John Schmitt

High-level motivation and goals - PM4-Stellarators

- Stellarators have intrinsic advantages
 - Steady state, disruption free, no hard density limit
- Stellarator coils are complex
- Complexity leads to higher costNew idea: Use permanent magnets to provide 3D shaping field!
 - Helander, et al., PRL 2019
- Technical goal
 - demonstrate that shaping fields required to create an optimized stellarator can be built
 - meet required accuracy (~10⁻³ error)

Major tasks, risks, milestones, and desired project outcomes


- Develop detailed design
 - Combine stellarator design tools with engineering models
 - Develop tooling and assembly concepts
 - Complete safety analysis of assembly plan
 - Develop error field (major risk) mitigation scheme (mechanical adjustment)
 - Build small test assembly
 - Go/No-go decision at completion of **Final Design Review**

- Procure materials, fabricate and assemble device
 - Verify magnet sub-assemblies during fabrication
- Measure resultant fields
 - Verify field errors meet tolerance
 - Adjust magnets to minimize errors
- Product = $\frac{1}{2}$ period of a 3-period optimized stellarator with verified magnetic fields

Key techno-economic metrics of the project (and, if applicable, its commercial fusion-energy application)

- Using adjustable mechanical assemblies of permanent magnets reduces the cost of stellarator field coils
 - NdFeB costs \$14/lb and has been used to create fields up to 4T
 - Can be immersed in fields up to 7T (when cooled)
 - Estimate 20-30% reduction in cost of coils by using only planar coils+ permanent magnets
 - Can also use magnets to reduce amount of non-planarity
- Addresses the main perceived issue for stellarators

Permanent Magnet mounting structure

