



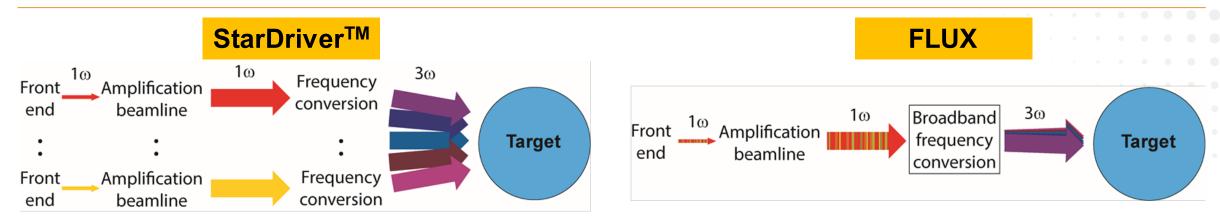
# **Broadband Frequency Conversion of Spectrally Incoherent Pulses and Initial Laser-Plasma Instabilities Mitigation Experiments**

BETHE Kickoff Virtual Workshop Aug. 11–12, 2020

Christophe Dorrer, Laboratory for Laser Energetics David Turnbull, Laboratory for Laser Energetics

This work is funded under the BETHE program by ARPA-e and DOE Office of Science




### Team members and roles

- Christophe Dorrer (PI)
  - Responsible for developing all scientific aspects of the proposed novel sum-frequency generation scheme for the Fourth-generation Laser for Ultrabroadband experiments (FLUX)
- David Turnbull (co-PI)
  - Responsible for developing all scientific aspects of the FLUX experiments on OMEGA, will lead the efforts to design, build and characterize the electron-plasma waves platform
- Elizabeth Hill (PM)
  - Responsible for the engineering and deployment of the proposed technology, will also define and coordinate sub-tasks across the team and enlist support from other LLE groups

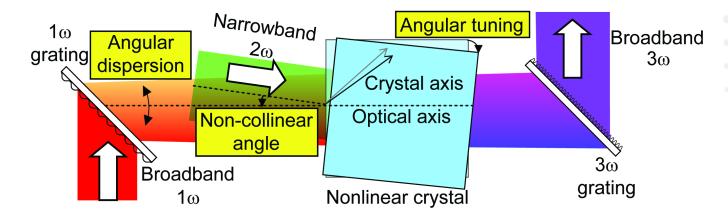




### The FLUX system will produce on-target spectrally incoherent UV pulses with fractional bandwidth $\Delta\omega/\omega > 1.5 \%$



- Simulations show that laser-plasma instabilities (LPI) detrimental to laser-target interaction can be mitigated by broadband spectral incoherent pulses ( $\Delta\omega/\omega$ >1.5%):
  - StarDriver<sup>™</sup> concept: large number of relatively narrowband laser drivers spanning a large fractional bandwidth
  - FLUX concept: broadband single-driver
- This project will enable the first experimental verification of LPI mitigation at large fractional bandwidth by:
  - Accelerating the implementation of a novel, high-efficiency, frequency-conversion scheme for broadband, spectrally incoherent pulses on FLUX
  - Demonstrating the mitigation of electron plasma wave instabilities using FLUX on the 60-beam Omega facility






### The project will allow for ICF/IFE-relevant LPI-mitigation studies using broadband spectrally incoherent UV pulses

### Deployment of broadband sum-frequency generation stage

- Tasks:
  - Design/procurement/fabrication
  - Testing of individual components
  - Construction/operation/optimization



#### Technical risks:

- Laser damage of optical components
- Ability to phase-match the nonlinear process
- Commercial availability of diffraction gratings and nonlinear crystal
- ► Outcome: Generation of 150-J 1.5-ns UV spectrally incoherent pulses with fractional bandwidth  $\Delta\omega/\omega$  > 1.5 %



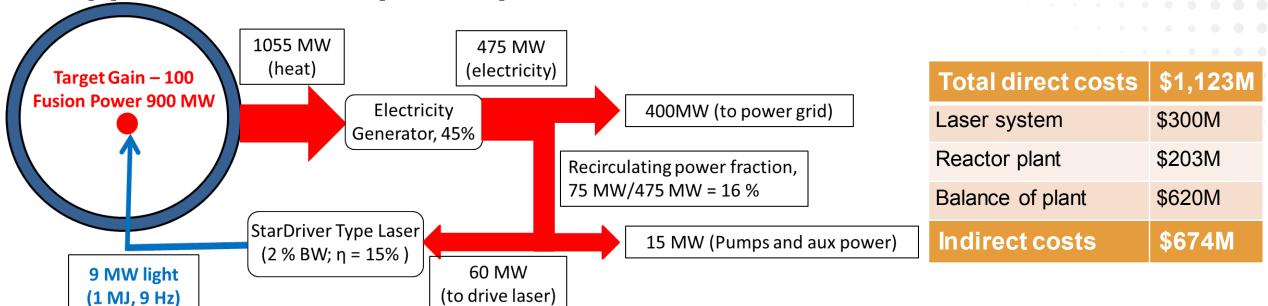


## The project will allow for ICF/IFE-relevant LPI-mitigation studies using broadband spectrally incoherent UV pulses

Demonstration of stimulated Raman scattering (SRS) mitigation (three shot days with OMEGA)

- ► Tasks:
  - Commissioning and characterization
  - Narrowband SRS campaign
  - Broadband SRS campaign






- Risks:
  - Ability to tailor the gas jet to generate only SRS and generate SRS in a regime relevant to ICF/IFE plasmas (e.g., a narrow SRS spectrum)
- Outcome: First UV large bandwidth SRS studies in regimes relevant to ICF/IFE, used to benchmark simulation codes





### A diode-pumped broadband StarDriver<sup>TM</sup> ( $\Delta \omega / \omega > 2\%$ ) is expected to support a 400-MW power plant with cost<\$2B



- First demonstration of broadband spectrally-Incoherent, high-peak-power UV radiation, sufficient to enable the experimental validation of critical LPI suppression in IFE target designs suitable for commercial fusion power.
- Current estimate for diode-pumped broadband StarDriver<sup>™</sup>-based 400-MW power plant (based on LIFE cost analysis):
  - overnight capital cost: \$1.8B
  - capital cost of electric power: 4.5 \$/W
- Will require more in-depth cost studies for various IFE approaches



