

Magnetic Field Vector Measurements Using Doppler-Free Saturation Spectroscopy

BETHE Kickoff Virtual Workshop Aug. 11–12, 2020

Elijah H. Martin, Oak Ridge National Laboratory David C. Donovan, University of Tennessee - Knoxville

DFSS IS A LASER-BASED SPECTRAL LINE PROFILE MEASUREMENT

Team members and roles

- Elijah H. Martin
 - Diagnostic design and assembly.
 - Performance verification via laboratory demonstration.
 - Identification of concept teams.

- Subsystem performance verification.

High-level motivation and goals of the project

Provide experimentally measured equilibrium B-field data needed to optimize and accelerate the fusion-concept. • He I 2³P - 5³S Experir $i\hbar\frac{\partial\Psi}{\partial t} = \hat{H}\Psi$ ensity (a.u.) 60 Pump Probe FIT-6564.66 6564.68 6564 7 6564 64 6564.66 6564.68 700 800 900 Wavelength (Å) Wavelength (Å) Actua pplicability Capabi Atomic H/D neutrals ($\geq 10^{10} \text{ m}^{-3}$) **B**_{II} magnitude/polarity (±5 Gauss) 1. 1. B_□ magnitude (±5 Gauss) 2. **Optical access at two locations** 2. 3. B-Field \geq 10 to 20 Gauss 3. mm (\Box) to cm (||) resolution Photodiode 5 to 20 ms temporal resolution 4. Detector

Major tasks, milestones, and desired project outcomes

Major Tasks/Milestones

- DFSS diagnostic design (8-15-2020).
- Verification of laser steering and alignment capability (8-15-2020).
- Verify DFSS diagnostic's magnetic field measurement accuracy (2-15-2021).
- Verify ability to increase spectral signal-tonoise ratio (2-15-2021).
- DFSS diagnostic commissioned (2-15-2021).

Key techno-economic metrics of the project

- Provide deployable diagnostic for magnetic field vector measurements in <1 YR:</p>
 - $-\pm 5$ Gauss accuracy and polarity for $B_{||}$
 - 50 x 500 mm measurement region with mm (\Box) to cm (||) resolution
 - 5 to 20 ms temporal resolution
 - performance verified at ORNL

 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •

· · · · · · · · · · · · · · · ·

.

.

.

Questions?

The laser is connected to vessel via fiber

- Reduces diagnostic footprint near vessel and allows 'easy' sightline reconfiguration.
- Laser is a Toptica TA-SHG pro (1000 mW CW). Mode hop free tuning range of 20-30 GHz with 1 kHz maximum sweep rate.
- The laser source and DFSS hardware are contained within a 19" equipment rack and 3' x 6' optical table. Optical assemblies are used to shape, steer, and collect the beam.

OPTICAL ASSEMBLIES ARE COMPACT AND MOBILE

