

Advancing the S&T of the Argon Fluoride Laser for Inertial Fusion Energy

BETHE Kickoff Virtual Workshop Aug. 11–12, 2020

Stephen Obenschain, U.S. Naval Research Laboratory Matthew Wolford, U.S. Naval Research Laboratory

This work is funded under the BETHE program by ARPA-E and DOE Office of Science."

Team members and roles

- Dr. Stephen Obenschain PI
- Dr. Matthew Wolford Leader of Electra ArF research project
- Mr. Matthew Myers Electra chief research engineer: pulse power, e-beam diode and ebeam deposition measurements.
- Mr. T. Jude Kessler Electra physicist: laser diagnostics
- Mr. Laodice Granger Electra chief technician
- Ms. Lori Pastor Administrative assistance
- Dr. Malcolm McGeoch Plex Inc.: consultant on ArF S&T

- Dr. Andrew Schmitt radiation hydrocode simulations of high-gain laser direct-drive targets
- Dr. Jason Bates simulations on mitigation effects of broad bandwidth and short laser wavelength on laser plasma instabilities
- Dr. James Weaver lead on advancing S&T for achieving broad bandwidth output from ArF lasers

High-level motivation and goals for ArF direct drive as a path to practical and economical inertial fusion energy.

- This project will advance the science and technologies of the ArF laser for IFE – focusing on the science.
- ► E-beam pumped ArF is predicted to have intrinsic efficiency ≥16% enabling 10% wall plug efficiency for laser light onto target.
- ArF's short wavelength (193 nm) and capability to provide broad bandwidth (10 THz) highly uniform light on target could enable the robust high energy gains (>100) required for inertial fusion energy (IFE) at energies below 1 MJ.
- The ArF laser could thereby enable enable smaller, lower cost laser IFE power plant modules.

High resolution two-dimensional simulation of a direct-drive shock-ignited target using a 357 kJ ArF driver – gain of 106 with 39 MJ yield.*

*Fig 3 from Phil. Trans. A. Volume 378, Issue 218, (2020) DOI https://doi.org/10.1098/rsta.2020.0031.

Major tasks (and technical risks), milestones, and desired project outcomes -- advance S&T of high-energy high efficiency ArF lasers for IFE

- Modify Electra to obtain 40% increase in E-beam deposition into laser gas with ArF gas mixtures (M2.1) – Electra was designed for KrF mixtures which have larger e-beam stopping coefficients.
- 15-cm x 30-cm oscillator optics installed on Electra (M2.2) – optimize aperture and e-beam pump for ArF oscillator operation
- Obtain >300 J from Electra in oscillator mode (M2.3)
- Diagnostics and laser hardware in place for intrinsic efficiency measurements (M3.2.1)

DEMO ≥16% ArF intrinsic power efficiency (M3.2.2)

- Intrinsic efficiency is the ratio of the laser power (energy) out divided by the E-beam pump power (energy) deposited in the ArF gas.
- Determine gas mixtures, pressures and pump rates that enable high intrinsic efficiency
- Compare results with ArF simulations

Major tasks (and technical risks), milestones, and desired project outcomes advance high-gain ArF target designs and S&T of achieving broad bandwidth

- Using 1-D and 2-D hydrocode simulations develop high-gain target designs with reduced laser energy (<1MJ).</p>
- Evaluate risks from laser plasma instabilities (LPI) and develop mitigation strategy through use of shorter wavelength and broad laser bandwidth.
- Iterate hydro-code and LPI simulations to identify design regimes where the implosions are high-gain yet resistant to both hydro and laser plasma instabilities.
- Determine bandwidth capability of electron beam pumped ArF lasers using the Electra facility.
 - measurements gain vs input wavelength
- develop path to both broad bandwidth (>8 THz) while retaining high intrinsic efficiency.
- * Fig 8 Jason Bates et al,. High Energy Density Physics 36 (2020) 100772
- ** **Fig 6** S.P. Obenschain et al., Phil. Trans. A. Volume 378, Issue 218, (2020) DC https://doi.org/10.1098/rsta.2020.0031.

 $I = 5 \times 10^{14}$ W/cm² onto spherical target

2-D LPSE simulation indicates ArF 193 nm light @ 5 THz bandwidth enables 91% absorption (vs 65% with a 351 nm laser @ 1 THz) *

Spectral shaped input to obtain 10 THz FWHM ArF output (kinetic simulation)**

Key techno-economic metrics of the project (and, if applicable, its commercial fusion-energy application)

The BETHE NRL ArF program will advance two critical elements of a laser IFE power plant:

- Determine operating regimes where ArF will have high electrical efficiency.
- Develop robust high-gain target designs that require less than 1MJ energy*
- * NRL and LLE will compare/discuss hydrocode and LPI simulations

IFE power plant using ArF direct drive implosions

High target gain @ (0.5 MJ) in combination with relatively high (10%) laser efficiency allows most of the generated electricity to be sent to the power grid.

