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▸Dr. Stephen Obenschain – PI

▸Dr. Matthew Wolford - Leader of  Electra ArF 

research project 

▸Mr. Matthew Myers - Electra chief research 

engineer: pulse power, e-beam diode and e-

beam deposition measurements.  

▸Mr. T. Jude Kessler - Electra physicist: laser 

diagnostics 

▸Mr. Laodice Granger - Electra chief technician

▸Ms. Lori Pastor - Administrative assistance          

▸Dr. Malcolm McGeoch – Plex Inc.: consultant 

on ArF S&T 

▸Dr. Andrew Schmitt – radiation hydrocode 
simulations of high-gain laser direct-drive targets 

▸Dr. Jason Bates – simulations on mitigation effects 
of broad bandwidth and short laser wavelength on 
laser plasma instabilities

▸Dr. James Weaver – lead on advancing S&T for 
achieving  broad bandwidth output from ArF lasers

Electra electron-beam-pumped amplifier



High-level motivation and goals for ArF direct drive as a path to practical and 

economical inertial fusion energy.   
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▸This project will advance the science and 

technologies of the ArF laser for IFE – focusing  

on the science.

▸ E-beam pumped ArF is predicted to have 

intrinsic efficiency ≥16% enabling 10% wall 

plug efficiency for laser light onto target. 

▸ArF’s short wavelength (193 nm) and capability 

to provide  broad bandwidth (10 THz) highly 

uniform light on target could enable the robust 

high  energy gains (>100)  required for inertial 

fusion energy (IFE) at energies below 1 MJ.  

▸The ArF laser could thereby enable enable 

smaller, lower cost laser IFE power plant 

modules.    

High resolution two-dimensional simulation of a 

direct-drive shock-ignited target using a 357 kJ 

ArF  driver – gain of 106 with 39 MJ yield.*

*Fig 3 from  Phil. Trans. A. Volume 378, Issue 218, (2020) DOI 

https://doi.org/10.1098/rsta.2020.0031.



Major tasks (and technical risks), milestones, and desired project outcomes   

-- advance S&T of high-energy high efficiency ArF lasers for IFE 
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▸Modify Electra to obtain 40% increase in E-beam 

deposition  into laser gas with ArF gas mixtures 

(M2.1) – Electra was designed for KrF mixtures 

which have larger e-beam stopping coefficients.

▸15-cm x 30-cm oscillator optics installed on 

Electra (M2.2) – optimize aperture and e-beam 

pump for ArF oscillator operation  

▸Obtain >300 J from Electra in oscillator mode 

(M2.3)

▸Diagnostics and laser hardware in place for 

intrinsic efficiency measurements (M3.2.1)

DEMO ≥16% ArF intrinsic power efficiency (M3.2.2)

• Intrinsic efficiency is the ratio of the laser power (energy) 

out divided by the E-beam pump power (energy) deposited 

in the ArF gas. 

• Determine gas mixtures, pressures and pump rates that 

enable high intrinsic  efficiency 

• Compare results with ArF simulations 



Major tasks (and technical risks), milestones, and desired project outcomes   

advance high-gain ArF target designs and S&T of achieving broad bandwidth
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▸ Using 1-D and 2-D hydrocode simulations develop high-gain 
target designs with reduced laser energy (<1MJ). 

▸ Evaluate risks from laser plasma instabilities (LPI) and 
develop mitigation strategy through use of shorter wavelength 
and broad laser bandwidth.

▸ Iterate hydro-code and LPI simulations to identify design 
regimes where the implosions are high-gain yet resistant to both 
hydro and laser plasma instabilities.

▸ Determine  bandwidth capability of electron beam pumped 
ArF lasers using the Electra facility.

- measurements gain vs input wavelength

- develop  path to both broad bandwidth (>8 
THz) while retaining  high intrinsic efficiency. 

* Fig 8 Jason Bates et al,. High Energy Density Physics 36 (2020) 100772

** Fig 6 S.P. Obenschain et al., Phil. Trans. A. Volume 378, Issue 218, (2020) DOI 
https://doi.org/10.1098/rsta.2020.0031.

Spectral shaped input to 

obtain 10 THz FWHM ArF 

output (kinetic simulation)** 

2-D LPSE simulation indicates ArF 193 nm light 

@ 5 THz bandwidth enables 91% absorption  

(vs 65% with a 351 nm laser  @ 1 THz) *

I = 5×1014 W/cm 2

onto spherical target 



Key techno-economic metrics of the project (and, if applicable, 

its commercial fusion-energy application)
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The BETHE NRL ArF program will 
advance two critical elements of a laser 
IFE power plant:

▸Determine operating regimes where 
ArF will  have high electrical efficiency.

▸Develop robust high-gain target 
designs that require less than 1MJ 
energy*

* NRL and LLE will compare/discuss hydrocode 
and LPI simulations

IFE power plant using ArF direct drive implosions

High target gain @ (0.5 MJ) in combination with 

relatively high (10%) laser efficiency allows most of 

the generated electricity to be sent to the power grid.   


