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Energy Storage in Railroad Applications

Battery 1K Workshop
Bob Ledoux, ARPA-E Program Director



Ultimate Goal: ;
How to speed decarbonization of the ——~

freight sector while increasing energy and
supply chain resiliency?




Rail Freight Facts

> 28% of domestic freight moves on rail

> Mostly linear system — routes are fixed and privately owned

> 7 privately owned class 1 railroads — support their own infrastructure
> Short haul freight rail not well integrated into long haul

» Two major manufactures of diesel-electric class 1 locomotives - > 25-
year service life

»
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Rail Transportation Industry Operational Overview

> Fuel cost are a significant (10%) operational cost.

> Power storage is not always dominant issue — Refuel time is !

> Emission reduction requirements have been partially mandated
> Already universally diesel-electric

> Safety is crucial

> Ports, rail yards have mature infrastructure — I1SO rail cars, etc.

> Operating costs reduction drives investment in new technologies
> Technology adoption requires interoperability between lines

> Serious risk aversion! 25-50 year lifetime of locomotives (3-5%
turnover/year)

> All capital investments need to be “future proof”
> |s Battery Electric the Best Way Forward? If so, What is Needed and When!
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Challenges to Rail Decarbonization

> High power drive systems (= few MW “continuous”)

> Very high energy storage requirements (= 10-50 MWh)

> Stringent Environmental and Safety Factors

> Need for widely distributed infrastructure

> Industry has been moving to larger trains — hybrid consists may mitigate
> High capital costs - long lifecycle for new technology

> Mostly privately owned
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Rail and Maritime Energy System Requirements
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Trains Are Efficient!

Speed and Resistance by Transport Mode

Speed—kilometers per hour
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The Way We Are...\Were?
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Battery Electric Locomotives

Progress Rail Wabtec
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Rail Decarbonization and Disaggregation?

Parallel Systems

Product — Parallel (moveparallel.com)
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https://moveparallel.com/product/

Potential New Energy Systems

> Batteries with regenerative braking

> Partial direct electrification — battery hybrid
> Fuel Cells, e.g., hydrogen

> Biofuels

> Hybrid
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LOCOMOTIVES: LOwering CO2: Models to Optimize Train Infrastructure,
Vehicles, and Energy Storage

ES - Propulsion Infrastructure Potential Impact

Distance required between refuel

Power delivered to wheels, P(t): - acc., + regen for each ES

ES option chosen by route

% ES option chosen
* On a per-route basis
* On a per unit energy basis

Time between refueling for each

Acceleration (t): + acc, - deacc ES

Energy expended by ES(t), - delivered for
propulsion, + regenerative

Fuel(t) expended (same signage as ES(t)) for
each propulsion source

Lifecycle GHG +/- for each route vs
baseline (today), based on chosen ES

Cost (LCTKM) +/- for each route vs
baseline, based on chosen ES

Aggregate impact: lifecycle GHG and

Fueling time

Fuel quantity at each refueling

GHG(t) for each source Energy content for each refueling cost
Cost for each refueling Uncertainty quantification
Infrastructure .
ES g New ES mix

Rail Constraints g * A Propulsion GHG impact
LCKMT impact
Investment $ @ GHG
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LOCOMOTIVES Summary — Modeling of Class 1 RR

24th Rallroad Envnronmental Conference

> First completely Open-Source ARPA-E program 23 November 2022

2022 RREC Program

v

Detailed GHG emissions for any train configuration
— Supports any type of locomotives hybrid configurations
— Any composition and size of cargos/cars

Global route map of complete class 1 railroad system at high resolution
— High spatial resolution with elevation and curvature

> Mapped out required infrastructure as a function of new ES requirements
Global optimization of RR scheduling based on user determined constraints
Initial LCA for locomotives life cycle - GREET

Expanded the dialogue for decarbonization! 2022 International Hydrail Conference
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LOCOMOTIVES - Outreach and Current Performers

National Labs/Academia Industry Government
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SCORE Fuel and GHG
Analysis : Hybrid Locomotive

Route : Pittsburgh_Latrobe

Detailed information of the route, including elevation data (USGS Elevation Service), gradient, curvature, and maximum speed along the route

s Perryopolis, ¥ §
Calfomia \ . Champion of )
$ J&8 Leafiet | € OpenStreetMap contributors, Style: CC-BY-SA 2.0 OpenRailwayMap and OpenStreetMap

2 Battery/Electric,1 Diesel Locomotive(s)

* Battery Max Power = 2*4398 hp = 8796 hp
* Diesel Max Power = 4336 hp

50 Tank Cars (143.0 tons each)

Duration = 1.34 hours
July 13, 2023

Web-Based Analysis Results View

Locomotive Power Flow Out(+)/In(-) On Route
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Total Diesel Energy = 2662 kw hr

Battery Energy Used = 4708 kw hr

Total Energy Regenerated = 1635 kw hr
Total Emissions (HC, CO, NO, PM) = 42 kg

m track_kmited_speed
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Total Diesel Fuel = 198 gal (5693 @ $3.50/gal)

Diesel, Battery, and
Regenerative Braking power
used or gained over the
route

Charging Battery from Gradient

Blue line : maximum track
speed

Green line : speed of consist
based on available power

Track elevation

Battery charge available
over the route

Penn State ra



What happens if battery range increases from 400 to 800 miles?

Consolidation on key rail corridors contributes to a 50% decrease in the cost of avoided emissions,
from $0.5/kgCO, to $0.22/kgCO,

400-mile range 800-mile range

Charging Facili ‘
WTW Emissions Levelized Cost ; o 9ing ty WTW Emissions Levelized Cost
of Operation of Operation

Diesel Netwaork
© Diesel Network

Battery Network
Covered (Non-Charging) Facility

B Dlesel

_  Scenario . Scenario
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£
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W station £,05 I W suation
100% Diesel  Scenario b iesel Battery
Total Ton-Miles Cost of Avoided Emissions Total Ton-Miles Cost of Avoided Emissions

0.5 [$/kg CO,] 0.22 [$/kg CO,]

Results for the Western railroads when serving 50% of ton- Results for the Western railroads when serving 50% of ton-
miles by battery-electric locomotives with a range of 400 mi. miles by battery-electric locomotives with a range of 800 mi.
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What Are Some Key Take-aways from Analysis of Railroads

> Time is Money! - time to refuel is critical
Infrastructure placement strongly dependent on range

> Must operate in extreme conditions — high-g/vibrations, large temperature
swings, “cold” start

> Interoperability among RR is crucial

Operational consistency with existing procedures is very important for rapid
deployment

> Disaggregation for short haul and resiliency is a new concept — are its energy
requirements the same as “standard” locomotives?
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Preview of Rail Panel

> Wendy Schugar-Martin (Director, Regulatory & Grants, Progress Rail)

> Michael Swaney (Director of Advanced Energy Innovation, BNSF Railway)
> John Howard (Vice President of Engineering, Parallel Systems)

> Venu Gupta (Director of Product Management, Wabtec)
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Let’s Continue the Conversation!

Thank You!

Cilg_lj(i "e July 13,2023
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Rail Resistance as a Function of Speed

Speed and resistance for conventional freight trair Resistance versus speed for a 10,000 ton train
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At low speeds, journal resistance dominates, but as speed increases air
resistance is increasingly the most important term « Train resistance is calculated by multiplying the resistance per ton
©® 2010 J. Riley Edwards and Chris Barkan. All Rights Reserved. REES Module #3 - Train Enerqy, Power and Traffic Control

at each speed, by the total tonnage of the train.

© 2010 J. Riley Edwards and Chris Barkan. All Rights Reserved. REES Module #3 - Train Energy, Power and Traffic Control *
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Total ton-miles of shipments

1-Truck

2-Rail

3-Water

4-Air (include truck-air)
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All modes are not created equal

> 60% freight (ton-miles) moved by truck -> 25% total transport emissions
> 40% moved by rail/water -> 4% total transport emissions

> Modal shift: if just a quarter of truck journeys over 100 miles were switched off-
road, 120 million tons CO,eq saved

Air .
Truck
Rail
Water
$1.35 $1.3o\/\$0.20 $0.15 §0.10 S0.05 S0.00 O 500 1,000 1,500 2,000\/\16,500 17,000
$/ton-mile kJ/ton-mile
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LOCOMOTIVES Plus-ups - Extend Models

> Disaggregation and the intermodal system
— Single powered rail cars, container transfer
— Route planning tool prototype
— Synergy with OPEN awardee Parallel Systems

> Electrification and Charging infrastructure details
> Green corridors and hydrogen as energy source

— Link with maritime routes
— Integrate hydrogen storage and transport

> Short line railroads, short haul (regional), passenger rail
> Full LCA for Class | rail

$500k currently in reserve -
requesting additional $0.5-1M plus-up

Cil"ljt.i "e July 13,2023

CHANGING WHAT'S POSSIBLE



LOCOMOTIVES Projects
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Innovation:
Identify, quantify, and compare decarbonization options for the railroad
freight industry over multiple spatial and multi-decadal time scales
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LOCOMOTIVES Projects
IINREL I SwRI =n=r '3 PennState

SOUTHWEST RESEARCH INSTITUTE

SCORE User Interface (local or web-based)
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LOCOMOTIVES : Model Structure

Goals Energy Sources Constraints

Routes

Logistics
GHG Time LCKMT Existing
Infrastructure

L ] 1] 3

ES, Select — Rollout Strategy

| L

Infrastructure(t) ESq(t)

$

Physical and Economic Models

Leverlized cost 4=
KM-Tonne fuel(a,t) # dES, - dt
Routes

LCKMT l GHG

Optimize Against Goals
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External Fuel Infrastructure was not part of LOCOMOTIVES

Industrial and Power Facilities
,
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CHANGING WHAT'S POSSIBLE KEY: TEUs = twenty-foot equivalent units. GOt Miam: N

One 20-foot container equals one TEU, and Port of San Juan, PR
one 40-foot container equals two TEUs.
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