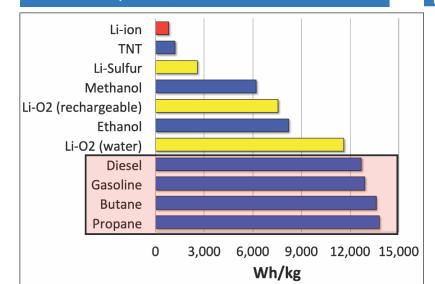
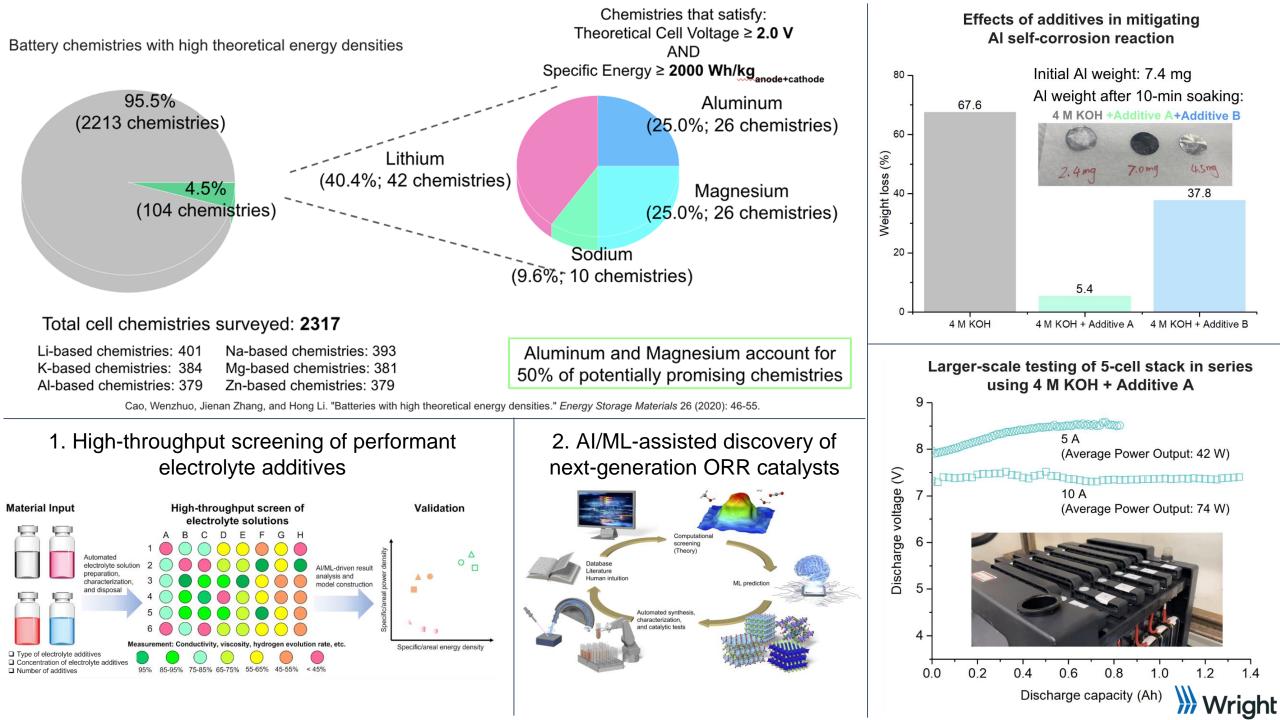



### **Technology Innovation Blast – Thursday AM**

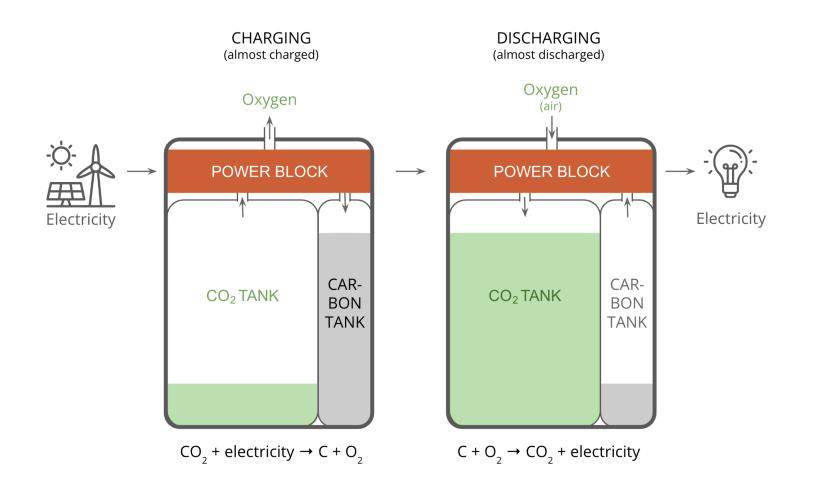
July 13, 2023


**C**COS Lithium/Air batteries for Ultra High Specific Energy Applications




Li/O<sub>2</sub> in aqueous electrolytes: Basic electrolyte:  $4Li + O_2 + 2H_2O = 4LiOH$  E=3.45V Acidic electrolyte:  $4Li + O_2 + 4H + = 2H_2O + 4Li$  E=4.27V Li/O2 in non-aqueous electrolytes:  $Li + O_2 = Li_2O_2$  (peroxide) E=2.96V

Primary Li-Air cells have active loading of approximately 250 mAh/cm<sup>2</sup>
Protected lithium electrodes (PLEs) are water-stable with a self-discharge rate of zero
Secondary Li-Air cells typically cycle O<sub>2</sub> capacity of 3 to 6 mAh/cm<sup>2</sup>
Primary Li-Air cells have consistently achieved 800 Wh/kg in government laboratories

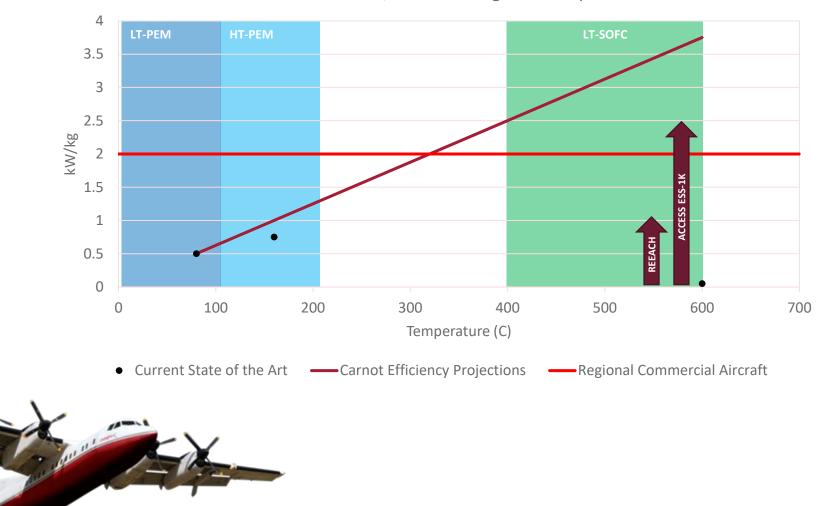

and over **1,000 Wh/kg** in testing at PolyPlus • Polycrystalline ceramic LATP membranes are 20 to 200 μm in thickness depending on the needs of the specific application



| Key parameter                               | As modeled                                                                                                                                                                     | Experimentally<br>demonstrated             | Projected<br>(commercialized) |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------|
| Onboard gravimetric energy density (kWh/Kg) | Li/Water                                                                                                                                                                       | 1300 Wh/kg                                 | ≥ 2000 Wh/kg                  |
|                                             | Li/Air                                                                                                                                                                         | 800 Wh/kg                                  | ≥ 1000 Wh/kg                  |
| Onboard volumetric energy density (kWh/L)   | Li/Water                                                                                                                                                                       | 700 Wh/l                                   | ≥ 1900 Wh/l                   |
|                                             | Li/Air                                                                                                                                                                         | 500 Wh/l                                   | ≥ 700 Wh/I                    |
| Refuel, recharge, reactivation time         | Mechanical swap<br>in minutes                                                                                                                                                  | 600 mAh/cm² Li<br>capacity in 150<br>hours | TBD                           |
| Power capability (kW/kg)                    | Li-Water                                                                                                                                                                       | 2000 Wh/kg at<br>28 W/kg today             | TBD                           |
| Life expectation (years and cycles)         | More than fifty 10 Ah PLEs have been stored for about 4 years with no loss in capacity. >10 years life is predicted. > 300 cycles expected                                     |                                            |                               |
| Temperature operating range (°C)            | Li-Water cells operate over the entire range of ocean temperatures (-2°C to 32°C). Li-Air cells operate in temperatures suited to aqueous electrolyte, typically 15°C to 30°C. |                                            |                               |



### Noon Energy's carbon-oxygen battery optimized for long-range electric transportation




- Independent energy (kWh) and power (kW) capacity
- >1000 Wh/kg and Wh/L possible for full system for 100+ hr long-range applications\*
- Good match for long-range marine shipping applications
- <\$20/kWh capital cost for long-range
- "Fast-charging" possible by mechanical swapping charged and discharged chemicals (similar to refueling)

\* The ceiling (storage media alone) is 2480 Wh/kg at 100% RTE.

# ACCESS to the Future of Aviation

Aviation Capable Commercial Energy Storage Solution

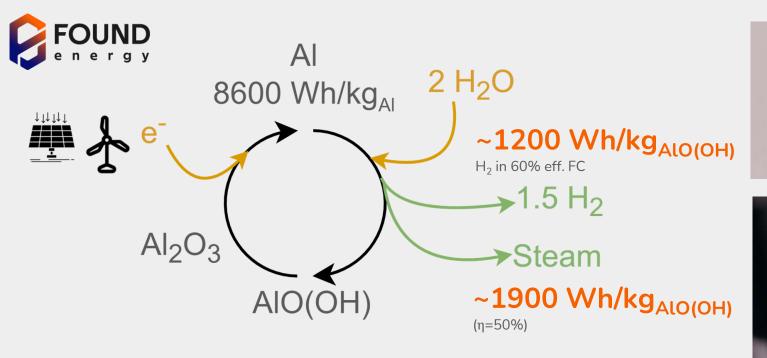


Fuel Cell Peak Power/Installed Weight vs. Temperature



## Making Primary Rechargeable

 $SE_{practical} = \alpha_{(t-p)}SE_{theoretical}$ 


L

 $\alpha_{(t-p)}$ , of about 0.5–0.6

|      | Chemistry                                    | Voltage<br>(V) | Electrons<br>transferre<br>d | Theoretic<br>al<br>capacity<br>(mAh g <sup>-1</sup> ) | Theoretic<br>al specific<br>energy<br>(Wh kg <sup>-1</sup> ) |
|------|----------------------------------------------|----------------|------------------------------|-------------------------------------------------------|--------------------------------------------------------------|
|      | Li metal                                     | A              |                              | 000                                                   | 0000                                                         |
|      | CFx                                          | 4              | 1                            | 900                                                   | 3600                                                         |
|      | SF <sub>6</sub>                              | 3.69           | 8                            | 1063                                                  | 3922                                                         |
| .i - | - <b>₽F<sub>x</sub>3≓ LiAF<sub>x</sub> -</b> | → LiF + A      | 3                            | 1186                                                  |                                                              |

----- Carnegie Mellon University

V. Viswanathan, A. Epstein, Y.-M. Chiang, E. Takeuchi, M. Bradley, J. Langford, M. Winter, Nature (2022) 601, 519–525







#### Found Energy's breakthroughs

# High power from safe, bulk form factors >10 MW<sub>th</sub>/kg<sub>Al</sub>

#### **Cost competitive**

Works with low purity scrap Al Works with tap water or seawater

What's next? Prototypes (50 kW) → Pilots (> 1 MW) Improved catalyst economics Steam utilization trials Planes, Trains, & (especially) Ships

### Volume matters too! 23,000 Wh/L<sub>Al</sub>



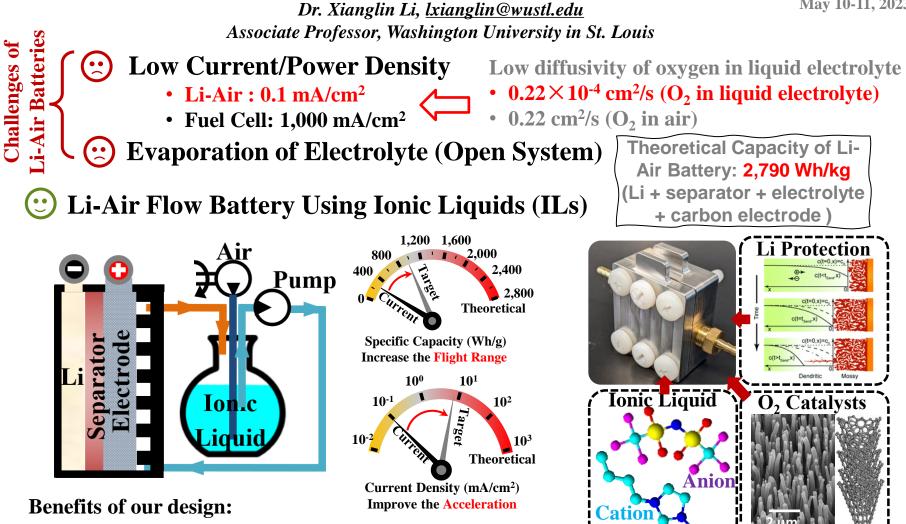
150 kg of

water

150 kg of aluminum

150 kg of diesel




150 kg of liquid hydrogen (excluding insulation and cryogenic cooling Source: Liebreich Associates

© 2023 Found Energy Co

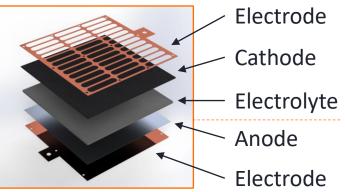


### **Li-Air Flow Batteries**





- Non-flammable and non-evaporating IL electrolytes.
- Electrode with high power and capacity.
- Active control of mass transfer and thermal management.
- The pumping power is <1% of the discharge power.


HYDROGRAPH

Achievable Capacity: >1,000 Wh/kg

Washington University in St. Louis

# Metal Light: Clean Electricity From Metal

#### Metal-Air Battery Architecture



- Metal-air system provides energy densities of 1200+ Wh/kg
- Removable anode for instantaneous recharge and circular fuel
- Safe non-flammable battery chemistry

- Suitable for maritime shipping and freight rail
- Projected 800 kW and 30 MWh capabilities in 40-foot container
- Low capital cost and comparable operating costs to diesel

#### **Contact Us For:**

- Partnerships
- Specifications



Ryan Goethals Cofounder, CEO Ryan@metallight.io



Dr. James Pikul Cofounder James@metallight.io



