Rice University

- Dr. Glen C. Irvin Jr.
- Research Professor, Dept of Chemical Engineering
- gci1@rice.edu

- Dr. Matteo Pasquali
- Professor, Dept of Chemical Engineering
- mp@rice.edu

pasquali.rice.edu

- Expertise: Carbon Nanotube Fiber (CNTF) conductor technology, characterization and system modeling;
 Synthesis of raw CNTs and conversion to CNTF in high speed roll to roll processing
- Expectations:
 - Understand System Level design opportunities for CNTF to simplify Underground T&D power conductors installation – how may this **ENABLE?**
 - Reduce Total Cost of Ownership (install, upgrading capacity, repairs) and failure modes
 - Evaluate Degrees of Freedom increase for equipment and system design with new material set

Rice University

How may a new Power Conductor Material with highly different properties and improvement ongoing impact Underground T&D Design, Installation and Equipment Systems?

- Will tremendous weight difference enable longer cable runs with CNTF? Significantly REDUCE number of splices....Enable improved pulling machines....
- CNTF is <u>very strong and rugged</u> how does a rethought system design and equipment use this effectively? Ultimate tensile strength (Pulling strength) is <u>order of magnitude</u> <u>beyond</u> current tech – <u>Stronger pulls with LIGHTER cables</u>
- CNTF Thermal conductivity is higher with potential to be multiples of Al or Cu – Improved ampacity, more resistant to overheating, temp spikes
- CNTF Processed like a textile HOW do we re-think splicing processes and equipment to simplify, remove human error, decrease failures
- Highly impervious to most chemicals including water its all Carbon
- Carbon surface may lend to unique chemistries for insulation methods

Comparison of Conductors for Undergrounding T&D

Performance Metric	Al Aloy 1350	Cu Alloy	CNTF (current)	CNTF (potential)
Density	2.7	8.9	1.9	1.5
Tensile Strength (Gpa)	0.115	0.21	4	20
Electrical Conductivity (MS/m) 25°C	35	58	11	75
Thermal Conductivity (W/m-K)	234	350	450	1000
CTE x 10⁻⁵ / ° C	24	16.6	1	1
Linear Density @ 2000 A	4.6	10.6	6.8	1
Susceptibility to				
Chemicals/Corrosion/Oxidation	mid - high	mid - high	Little to none	Little to none
Young's Modulus (GPa)	62	110	260	500
				Potential significant Manufacturing/install Advantages in UG

Multiple form Factors to enable New conductor and Neutral wire designs

Rice University

How do We Translate New Properties to Improved Install and Performance?

In 2004, Flexibility Was a Major Choice

What is relationships Between Conductor Material Properties and Total Cost of Ownership?

Do we have a Pareto Analysis
Of Install Cost Factors, Complexity
To Conductor Material?

* Factors for Cable Choice - 2014

*Evolution of MV Cable Designs from 1993 to 2014 Essay Wen Shu and Nigel Hampton, 2018 NEETRAC **Medium Voltage Cable System Issues, NEETRAC, 2016 Cable Diagnostic Focused Initiative Phase II

Equipment Type as Reported by Utilities