

# Ammonia Fuel Opportunities, Markets, Issues

Dr. Steve Wittrig Senior Advisor, Advanced Energy Systems Clean Air Task Force (www.catf.us) tswittrig@gmail.com

# The Prize – 21st Century

(With Apologies to Daniel Yergin)

### A zero carbon fuel

That can be used for transportation and power generation

That is scalable from global chemical to global energy proportions

That is an inherently clean fuel with regard to traditional pollutants and CO<sub>2</sub>

That has a century long history of large scale handling and use

That is competitive in energy pricing to current fuels

That holds promise for low or no carbon production (through CCS on standard technology or advanced technology for renewables or nuclear)

That *appears to be* within easy reach through optimization of production, use and safety regulations



### What We Know

- Ammonia average price over last 20 years is \$300 per tonne. Equivalent to \$1.75 gal gasoline and \$14 per MMBTU LNG. Power at \$0.11 per kwh (@45% efficiency)
- Ammonia can be produced from zero carbon energy (hydro, nuclear, wind) and with significant CCS at lowest cost of capture for any hydrocarbon process
- Ammonia diesel engines are proven and essentially equivalent in cost (either with diesel blending, precracking or advanced engines)
- Ammonia turbines with precracking to produce hydrogen for component of the fuel are efficient and flexible

 In general, these technologies have considerable headroom and are primarily in need of engineering optimization and field prototyping for commercialization



### Low Carbon Ammonia (And Front End For CCS)

- Ammonia plants emit pure (sequestration-ready) CO<sub>2</sub>. Approximately 2/3 is pure. With current technology, the rest is flue gas from the reformer.
- There are active markets to purchase CO<sub>2</sub> for enhanced oil recovery.
- Ammonia plants built close to EOR fields can sell their waste CO<sub>2</sub> to be sequestered in oil fields after use. EOR technologies exist for complete CO2 sequestration at low incremental cost. (co-injection with N2)
- This co-product value can reduce production cost for eventual fuel use.
- These operations will also supply a great deal of experience, technology and infrastructure for carbon capture and for CO<sub>2</sub> transportation and sequestration.
- This will serve as a bridge while "green ammonia" technologies from renewables, hydro and nuclear energy are optimized for a decarbonized ammonia energy system for power and for liquid fuel for transportation.



### Zero Carbon Ammonia As a Basis for Affordable, World Scale Zero Carbon Energy

- Decarbonize the giant gas reserves. Initially, pure CO2 injection for miscible EORce. Separate injection points of CO2 flue gas for immiscible pressure maintenance.
- Injection continues into reservoir following oil production and into adjacent reservoirs.
- Renewable energy (wind, solar, hydro, geothermal) and nuclear to produce ammonia from water and air.
- Electrolysis to H2 and Haber Bosch ammonia in development at prototype stage – potentially \$400 per tonne on technologies in development.
- Solid State Ammonia Synthesis (SSAS) also in the same range.
- Fundamental point. Ammonia is the simplest molecule that stores hydrogen in a liquid form at near ambient conditions.



# Power Generation - NH3 Diesel Engines

- One of the most promising early applications for ammonia as a fuel is large stationary diesel gen sets. (nominally 40-45% efficient for power, 75% for CHP). Sturman engines as prototype.
- There are over 200 GW of medium to large diesel engines that run on a continuous basis producing electricity. These installations often feature a dozen or more engines installed in a kind of 'modular power plant'.
- These modular power plants can be installed very quickly, scaled up or added as necessary, and redeployed when not needed or if the economic conditions change.

- Gas Turbines. Crack some of the NH3 to produce arbitrary amount of H2 for co-feed with NH3 (tunable fuel, exhaust heat recovery). SPG
- Fuel Cells. Ideal fuel for SOFCs. Ideal hydrogen storage and delivery for PEMFCs and FCVs
- Space heating, Process heat (similar to LPG). Ideal for CHP from gensets.



# Starting Points For Transportation

- There are several entrepreneurs and institutions that are advancing the technology of engines for ammonia fuel.
- Toyota is developing a technology and patent portfolio for ammonia engines including onboard cracker for tunable addition of hydrogen. <u>https://www.collectiveip.com/companies/toyota-motors/patents?fin=Norihiko+Nakamura&q=ammonia+engine</u>
- Jay Schmuecker has developed a system to manufacture ammonia from solar and a tractor to run on the ammonia. <u>https://nh3fuel.files.wordpress.com/2014/10/nh3fa-2014-jay-schmuecker.pdf</u> <u>http://solarhydrogensystem.com/new/wp-content/uploads/2015/04/schmuecker-launch-brochure-web.pdf</u>
- Sturman Industries is developing ammonia engines based on advanced concepts in valves, camless engines and injection strategies. <u>https://www.youtube.com/watch?v=aojUI74qHfc</u>
- The lowa Energy Center is developing engine technologies for use in agricultural industry.

http://www.iowaenergycenter.org/search/?cx=003074495176662961374%3Apisxjengoxu&cof=FORID%3A11&ie=U TF-8&q=energy+ammonia+engine&sa=Search&sa=Search

 Greg Vezina has developed ammonia vehicles on standard platforms. From all appearances, these are well developed prototypes. <a href="https://www.youtube.com/watch?feature=player\_embedded&v=Bs3HSChSh\_E">https://www.youtube.com/watch?feature=player\_embedded&v=Bs3HSChSh\_E</a> (Hydrofuel, <a href="http://nh3fuel.com/">http://nh3fuel.com/</a>)

## **Global Sources - Overview**

- Alaska North Slope
- US Southwest/Midwest/Fracking in general
- Middle East / North Africa (lowest cost ammonia currently, lots of headroom)
- Canada Hydroelectric (10's of GW of low cost power on contract)
- Iceland (practically unlimited geothermal at ~3 cents/kwh)
- Big Wind (depends on low capex electrolysis tech, allows local grid stabilization)
- Off Peak Nuclear (depends on low capex electrolysis tech, allows local grid stabilization)



# **Global Markets - Overview**

- Alaska (displace diesel across the state, supply Anchorage, alternate export market for Alaska gas)
- Hawaii (displace diesel, resid and gasoline across the islands; CHP and distributed generation)
- Northeast/MidAtlantic (energy security, grid stability, alternative to gas)
- Midwest (energy security, grid stability, displace fuel oil/LPG, fertilizer)
- Caribbean (displace diesel, resid and gasoline across the islands)
- Japan (alternative to expensive LNG and coal, replacing nuclear)
- Indonesia (displace diesel, resid and gasoline across the islands)
- China (clean cities, rural access, much easier than gas)
- Europe (energy security, CHP, DG, fertilizer/fuel)
- Africa, South America (ammonia diesel gen, clean cities, rural access)

### Neighborhood Energy Station

- A typical high volume gasoline station can easily dispense 1.5 MM gallons of multiple grades of gasoline/diesel in a year. This case examines a 'neighborhood' ammonia energy station of approximately the same scale that could provide power and heat to the neighborhood (or condo or office building) in an urban environment. This station would house a diesel genset/CHP unit running on ammonia. The prototype for this is the MHI MegaNinja gas genset (delivered on 40' trailer, 1.5 MW generator operating at 42.5% efficiency, designed for combined heat/power taking efficiency up to 75% for medium pressure steam/space and water heating and adsorptive air conditioning.)
- The general complexity of these stations would be less than a gasoline station (single grade, dispensed almost entirely to the generators instead of retail interface with hundreds of transactions to untrained public per day). Tank volume, general regulatory requirements and fuel delivery logistics would be similar.
- The average weekly volume would be about 35,000 gallons. We can 'design' for 40,000 gal/week peak usage. A typical tank size for ammonia distributors is 30,000 gallons. So, with one 30,000 gal tank (installed underground for safety, security and ease of temp/pressure maintenance), we could operate with three a week deliveries from 11,500 gal tank trucks (typical size ammonia trucks). I'm sure the logistics can/will be optimized beyond that, but this will do for illustration.
- Very rough project costs would be about \$1.2 MM for ammonia MegaNinja, \$0.1 MM for underground tank, connections and land. Roughly \$1.5-\$2 MM.



### Neighborhood Energy Station

- Upside revenue potential for similar projects in other regions of the world. Examples:
- Island economies that must generate their power from fuel oil (Hawaii, Caribbean, Indonesia). Fuel oil is \$30-\$40 per mmbtu. It is dirty and must be located away from populations (and especially resorts). That also makes it very difficult to capture and utilize the 1/3 of the btu's from CHP that clean ammonia engines can provide. These units can provide clean power at less than half the cost and, on top of that, very efficient heat and air conditioning (absorptive chilling).
- Medium scale distribution/retail (frozen/refrigerated foods), light industry and agriculture utilizing refrigeration, medium pressure steam or drying (e.g., crops) that place high value on the associated heat)
- Regions that place high value on pure water (exhaust from ammonia Sturman engine is water and nitrogen. Pure water can be captured at the cost of condensing the water.) Combustion of 1.75 MM gallons of ammonia generates about 1.7 MM gallons of water.
- They will be very attractive to sites willing and able to pay large premiums for locally controlled, uninterruptible power (financial/business centers, server farms, hospitals, military/government installations, large research facilities/research universities)
- Regions that are imposing a cost on CO2 emissions can reduce or eliminate those costs. Clean Power Plan.
- Grid ancillary services. Load following, Peak power, Voltage/frequency regulation, Locational value, Black start



### Neighborhood Energy Station – Ideal Power







### Utility Level Storage to Stabilize Grid

### **Utility Storage Market Drivers:**

- Wind and Solar Integration
- Energy Arbitrage
- Frequency Regulation & Ancillary Services
- Infrastructure Upgrade Deferral
- Locational Capacity

Different battery technologies will supply this market



**120kW – 500kW** Bonneville Power Authority, WA

### Ideal Power is forming alliances with leading battery suppliers











### Ammonia Energy Station can be installed at highest locational value Highest leverage to stabilize grid, relieve congestion and defer infrastructure investment

For Each DPA & Substations/Feeders Annual Dist. Planning & Integration Capacity Analyses Biennial DRP Locational Value Analysis







http://resnick.caltech.edu/docs/MTS\_V2.pdf

### Neighborhood Energy Station

- With a set up like Ideal Power, this configuration can
- Easily accommodate renewable solar or wind by cutting back genset (with immediate local load following).
- Pass through solar/wind or ammonia power and ancillary services to the grid. 24/7 availability of peaking power (125% of genset rating typical), frequency regulation, voltage support, black start.
- Provide predictable, addressable standby reserve available on 5 minute call-up (with right incentives and minimally sophisticated 'smart grid' controls) (much cheaper and much more flexible than spinning reserve CCGT that is only used as gas prices are rising above \$40/mmbtu)
- Provide distributed and potentially very substantial regional fuel reserve for mid-winter, late summer, regional security (much cheaper (pseudo-'free') than natural gas storage and much more flexible). 30,000 gallon underground tank of ammonia provides about 180 MWh of electricity (42%) and 400 MMBTU of CHP heat (30%), About 5 days of continuous operation.



# How Does This All Get Started?

- Market demonstration at 1-10 MW scale (diesel gen, refit, new optimized, blends)
   Sturman engines, Fleming Ammonia, others
- Evaluation of these systems for zero carbon power across the value chain by experts and system modelers
- Engage regulators and power industry
- Engage ammonia producers/investors
  - New build guaranteed offtake (some fraction of production)
  - Eventually, utility plants with guaranteed returns for fuel take or pay (with perhaps shared profits for joint sales into market after satisfaction of energy market contractual requirements)
  - Market, regulatory, technology demo support from self selected producers
  - Plant technology/engineering firms (KBR, Uhde, MHI, etc) that will benefit from increased building
- Low cost, high CO2 value areas for low carbon, low cost fuels
- Accelerate demo/commercialization of power to NH3 technologies
  - Compile list of potentially interested investors, green funding, etc for incipient technologies for investments in the range of \$5-\$20 MM for FEED, critical demoes or initial deployment in regions for low cost "stranded" power (i.e., Canada, Iceland, Hawaii)
  - Competition for proposals for ammonia from power, perhaps with funding from such entities
- Project development with engaged stakeholders



# **Backup Slides**



# Indicative Economics - Overview

- New world scale plant, 1 mm tonnes/year @ \$1200 per tonne of annual capacity. 10% annual capital charge about \$120/tonne
- Approx. 30 mmbtu of gas required per tonne of ammonia (e.g., \$4/mmbtu gas, about \$120/tonne of ammonia)



http://www.ourenergypolicy.org/wp-content/uploads/2015/04/BNEF\_ChemicalsWhitePaper\_2015-01-20-final1.pdf



## **Compare to Battery Storage**

- Much lower cost, 30,000 gal underground tank (similar to gas station) stores about 180 MWh and 400 MMBTU CHP heat. About \$100,000 capital cost.
- Much longer life (genset versus batteries)
- Gensets require more maintenance
- Zero carbon 'recharge' from ammonia delivery (does not use local excess power to manage local peaks/valleys). Accesses lowest cost excess power in region.



# Compare to Nat Gas Genset

- No need for gas supply
- No new pipelines required (multi hundred million \$ projects, 5 year projects from negotiation thru gas flow, political/public opposition)
- Purchase fuel from multiple sources rather than prices set by pipeline operations
- Reduced exposure to price volatility
- Not subject to pipeline/compressor failure
- Very low cost local storage of energy (days of operation without refill) compared to expensive cavern storage backed up by LNG
- No CO2 emissions
- Low/No NOX



Because the system can now operate at variable rpm, it maintains a high torque regardless of the output, thus maintaining near full-load efficiency throughout its operating range. Additionally, more output can be derived from the same engine if it can be operated to the higher rpm, that is, beyond the typical synchronous speed of 1800 rpm. Another advantage is that the same machine can be applied to the 50 Hertz market, without de-rating or design changes.



| Er   | ngine/Ger | nerator Out | put | . Ν          | De    | elivered l | ٢N |
|------|-----------|-------------|-----|--------------|-------|------------|----|
| RPM  | Volts     | Freq (hz)   | KW  |              | Volts | Freq (hz)  |    |
| 1000 | 98        | 135         | 39  | Power \      | 480   | 60         |    |
| 2200 | 207       | 297         | 93  | Conversion / | 480   | 60         |    |
| 3000 | 258       | 405         | 130 |              | 480   | 60         |    |
|      |           |             |     | V ·          |       |            |    |

FIGURE 1. CONCEPTUAL DESIGN OF INVERTER-BASED ENGINE GENERATOR



37 88 123

http://bpe-ne.com/wp-content/uploads/2012/07/top10-reasons-to-choose-inverter-based-engine-chp.pdf

| Ammonia Fuel<br>Cost<br>Cap Charge    | Ammonia Cost<br>(\$/tonne)<br>\$ 300<br>Capex for dieselgen<br>(\$/kw) | \$/mmbtu (@21.3<br>mmbtu per tonne)<br>\$ 14.08<br>% premium<br>utilization per year | Efficiency of<br>conversion to power<br>45.0%<br>premium kwh per<br>year per installed kw | kwh per tonne of<br>ammonia<br>2812.5<br>Annual capital<br>charge as % capex | kwh per gallon of<br>ammonia<br>6.53<br>Annual capital<br>charge (per kw) | \$/kwh for fuel cost<br>\$ 0.107<br>capital charge per<br>premium kwh |                                                       | Total Capital<br>\$ 2,250,000                     | Annual Operating<br>Profit (no cap charge)<br>\$ 503,758   | Payback, years<br>4.47                                                  |
|---------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------|
|                                       | \$ 1,500                                                               | 60.0%                                                                                | capacity<br>5256                                                                          | 12.5%                                                                        | \$ 188                                                                    | \$ 0.036                                                              |                                                       |                                                   |                                                            |                                                                         |
|                                       |                                                                        |                                                                                      |                                                                                           |                                                                              |                                                                           |                                                                       |                                                       |                                                   |                                                            |                                                                         |
| Scale of<br>Installation<br>and costs | Scale (kw installed)                                                   | premium kwh<br>dispatched                                                            | annual tonnes of<br>ammonia for<br>premium ops                                            | Annual fuel<br>expenditure for<br>premium ops, \$                            | Annual Capex<br>Charge, \$                                                | annual gallons of<br>ammonia                                          | ammonia use during<br>full dispatch (gal per<br>hour) | Days of operation<br>from full 50,000 gal<br>tank | number of 11500 gal<br>tanker truck deliveries<br>per year | Annual maintenance<br>and labor @ \$0.02<br>per kwh                     |
|                                       | 1500                                                                   | 7,884,000                                                                            | 2803                                                                                      | \$ 840,960                                                                   | \$ 281,250                                                                | 1208179                                                               | 230                                                   | 9.1                                               | 105                                                        | \$ 157,680                                                              |
|                                       |                                                                        |                                                                                      |                                                                                           |                                                                              |                                                                           |                                                                       |                                                       |                                                   |                                                            |                                                                         |
| Revenue<br>Streams                    | Recoverable heat<br>per tonne of<br>ammonia (40% of<br>21.3 MMBTU)     | Total recoverable<br>heat, mmbtu                                                     | Sales heat price,<br>\$/mmbtu                                                             | Annual heat revenue                                                          |                                                                           | Sales power price,<br>premium on<br>demand, \$ per kwh                | Annual power<br>revenue (from %<br>utilization)       |                                                   | Total annual revenue<br>Premium operation                  | Premium Revenue -<br>fuel cost - cap<br>charge - labor &<br>maintenance |
|                                       | 8.5                                                                    | 23827.2                                                                              | \$ 4.00                                                                                   | \$ 95,309                                                                    |                                                                           | \$ 0.15                                                               | \$ 1,182,600                                          |                                                   | \$ 1,277,909                                               | \$ (1,981)                                                              |
|                                       |                                                                        |                                                                                      |                                                                                           |                                                                              |                                                                           |                                                                       |                                                       |                                                   |                                                            |                                                                         |
| Opportunistic<br>operations           | Sales power price,<br>opportunistic, \$/kwh                            | Opportunistic sales<br>(% dispatch outside<br>premium window)                        | Opportunistic<br>dispatch (hrs/yr)                                                        | Opportunistic<br>dispatch (kwh/yr)                                           | Annual tonnes<br>ammonia for<br>opportunistic                             | Opportunistic<br>fuel/maintenance<br>cost                             | Opportunistic<br>revenue<br>(power+heat)              | Opportunistic<br>revenue -<br>fuel/maintenance    | Total annual revenue<br>(w/ opportunistic)                 | Total Revenue - fuel<br>cost - cap charge -<br>labor &<br>maintenance   |
|                                       | \$ 0.20                                                                | 50%                                                                                  | 1752                                                                                      | 2,628,000                                                                    | 934                                                                       | \$ 332,880                                                            | \$ 557,370                                            | \$ 224,490                                        | \$ 1,835,278                                               | \$ 222,508                                                              |



|         |           |          |          |            |                |         | Ch4   |        |           |        |        |
|---------|-----------|----------|----------|------------|----------------|---------|-------|--------|-----------|--------|--------|
| Capital | Capacity  |          | Longth   | Sustaining | CADEV          | Cash    | mmbtu | Gas    |           |        |        |
| (MM     | (1000     | Cost of  | of loan, | capital MM | charge         | ch4 per | tonne | per    |           |        |        |
| \$)     | tpa)      | Capital  | years    | per year   | annual MM      | tonne   | NH3   | mmbtu  |           |        | IRR    |
| 1100    | 1200      | 4.0%     | 20       | \$ 10.00   | (\$70.94)      | \$45.00 | 32    | \$3.00 |           |        | 12.3%  |
|         |           |          |          |            |                |         |       |        |           |        |        |
| Gas     |           | NH3      |          |            |                |         |       |        | CO2       |        |        |
| cost    |           | sales    |          |            |                |         |       | Pure   | sales     | CO2    |        |
| per     | Cash cost | price \$ |          | Cash       | Profit, cash - |         |       | CO2,   | price, \$ | revenu | Profit |
| year    | per year  | per      | Revenue  | Margin     | cap charge     |         |       | 1000   | per       | es,    | with   |
| MM\$    | MM        | tonne    | (MM \$)  | MM\$       | MM\$           |         |       | tpa    | tonne     | MM\$   | CO2    |
| \$ 115  | \$ 169    | \$ 300   | \$ 360   | \$ 191     | \$ 120         |         |       | 1500   | 20        | \$ 30  | \$ 150 |
|         |           |          |          |            |                |         |       |        |           |        |        |



### Some Initial Scenarios For Discussion



|                                                                                                                                                              |                          |                                                | Haw                          | aii distillate                                             | , resid and o                                              | oal import                                                | (125 T BTU)                                                |                                                         |                                                         |                                                            |                                                                |                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------|------------------------------|------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------|
| MOD                                                                                                                                                          | DEL RESI                 | JLTS                                           |                              |                                                            |                                                            | COST, T                                                   | HERMO AND CO2                                              | MATRIX                                                  |                                                         |                                                            |                                                                |                                                        |
| USER INPUTS<br>ALLOWED IN GREEN<br>CELLS                                                                                                                     | ALL<br>VALUES<br>EQUIV 1 | ALL VALUES<br>CORRESPOND TO CASE<br>PARAMETERS |                              | AMMONIA                                                    | NATURAL GAS                                                | GASOLINE                                                  | LPG                                                        | DIESEL                                                  | COAL                                                    | ETHANOL                                                    | METHANOL                                                       | DME                                                    |
| REQUIRED INPUT or<br>CALCULATE Tonnes NH3<br>for your scenario in D4                                                                                         | 1.00                     | 5.86E+06                                       |                              | INPUT Price of NH3<br>delivered to site, \$<br>per tonne   | INPUT Price of gas<br>delivered to site, \$ /<br>mmbtu     | INPUT Price of<br>gasoline delivered to<br>site, \$ / gal | INPUT Price of LPG<br>delivered to site, \$ /<br>gal       | INPUT Price of diesel<br>delivered to site, \$ /<br>gal | INPUT Price of coal<br>delivered to site, \$ /<br>tonne | INPUT Price of<br>ethanol delivered to<br>site, \$ / gal   | INPUT Price of<br>methanol<br>delivered to site, \$<br>/ tonne | INPUT Price of DME<br>delivered to site, \$<br>/ tonne |
| OPTIONAL USER-<br>DEFINED VARIABLE.<br>ENTER VARIABLE NAME<br>IN THIS CELL ENTER (1 T<br>NH3 BASIS) IN CS.<br>ITERATE DA TO ACHEVE<br>DESIRED QUANTITY IN DS |                          | 0.00                                           |                              | \$350                                                      | \$30.00                                                    | \$4.00                                                    | \$4.00                                                     | \$4.00                                                  | \$50                                                    | \$5.00                                                     | \$200                                                          | \$290                                                  |
| MMBTU (or 1000 CF gas<br>equiv) contained in NH3                                                                                                             | 21.32                    | 124,987,434                                    |                              | Tonnes NH3 for 21.3<br>MMBTU                               | MMBTU gas for 21.3<br>MMBTU                                | Gal gasoline for 21.3<br>MMBTU                            | Gal LPG for 21.3 MMBTU                                     | Gal diesel for 21.3<br>MMBTU                            | Tonnes coal for 21.3<br>MMBTU                           | Gal ethanol for 21.3<br>MMBTU                              | Tonnes methanol for<br>21.3 MMBTU                              | Tonnes DME for 21.3<br>MMBTU                           |
| MMBTU gas required for<br>NH3                                                                                                                                | 32.0                     | 187,616,000                                    |                              | 14                                                         | 21.3                                                       | 172                                                       | 234                                                        | 156                                                     | 10                                                      | 253                                                        | 0.982                                                          | 0.71                                                   |
| TCF natural gas required<br>for NH3                                                                                                                          | 2.946-08                 | 0.172                                          |                              | NH3 Fuel Cost (for 21.3<br>mmbtu) - This Scenario          | Gas Fuel Cost (for 21.3<br>mmbtu) - This Scenario          | Gasoline Fuel Cost (for<br>21.3 mmbtu) - This<br>Scenario | LPG Fuel Cost (for 21.3<br>mmbtu) - This Scenario          | Diesel Fuel Cost (for 21.3<br>mmbtu) - This Scenario    | Coal Fuel Cost (for 21.3<br>mmbtu) - This Scenario      | Ethanol Fuel Cost (for<br>21.3 mmbtu) - This<br>Scenario   | Methanol Fuel Cost<br>(for 21.3 mmbtu) -<br>This Scenario      | DME Fuel Cost (for<br>21.3 mmbtu) - This<br>Scenario   |
| Tonnes water produced<br>from NH3                                                                                                                            | 1.586+00                 | 9,263,540                                      |                              | \$350                                                      | \$639                                                      | \$688                                                     | \$936                                                      | \$624                                                   | \$52                                                    | \$1,265                                                    | \$196                                                          | \$206                                                  |
| # Global ammonia<br>industry                                                                                                                                 | 6.672-09                 | 0.039                                          |                              | kwh from 21.3 mmbtu at<br>45% efficiency (gas/nh3<br>like) | kwh from 21.3 mmbtu at<br>45% efficiency (gas/nh3<br>like) | kwh from 21.3 mmbtu at<br>35% efficiency (coal like)      | kwh from 21.3 mmbtu at<br>45% efficiency (gas/nh3<br>like) | kwh from 21.3 mmbtu at<br>35% efficiency (coal like)    | kwh from 21.3 mmbtu at<br>35% efficiency (coal like)    | kwh from 21.3 mmbtu at<br>45% efficiency (gas/nh3<br>like) | kwh from 21.3<br>mmbtu at 45%<br>efficiency (gas/nh3           | kwh from 21.3<br>mmbtu at 45%<br>efficiency (gas/nh3   |
| II of World Scale NH3<br>Plants                                                                                                                              | 1.258-06                 | 7.33                                           |                              | 280                                                        | 2800                                                       | 2200                                                      | 2800                                                       | 2200                                                    | 2200                                                    | 2800                                                       | 280                                                            | 2800                                                   |
| Number of 60,000 cbm<br>vessels                                                                                                                              | 2.44E-05                 | 143                                            |                              | Fuel cost for power,<br>\$/kwh from NH3                    | Fuel cost for power for<br>power, \$/kwh from gas          | Fuel cost for power,<br>\$/kwh from gasoline              | Fuel cost for power,<br>\$/kwh from LPG                    | Fuel cost for power,<br>\$/kwh from diesel              | Fuel cost for power,<br>\$/kwh from coal                | Fuel cost for power,<br>\$/kwh from coal                   | Fuel cost for power,<br>\$/kwh from<br>methanol                | Fuel cost for power,<br>\$/kwh from DME                |
| Number of 80 tonne<br>railcar deliveries                                                                                                                     | 0.0125                   | 73,288                                         |                              | \$0.125                                                    | \$0.228                                                    | \$0.313                                                   | \$0.334                                                    | \$0.284                                                 | \$0.024                                                 | \$0.452                                                    | \$0.070                                                        | \$0.074                                                |
| # of 1 MM TPA NH3<br>pipeline                                                                                                                                | 1.005-06                 | 5.9                                            | AMMONIA, NO<br>CCS           | AMMONIA w/<br>HARVEST                                      | NATURAL GAS                                                | GASOLINE                                                  | LPG                                                        | DIESEL                                                  | COAL                                                    | ETHANOL                                                    | METHANOL                                                       | DME                                                    |
| MWh from 45% efficient<br>power plants                                                                                                                       | 2.818+00                 | 16,475,030                                     | T CO2 per 21.3<br>mmbtu,only | T CO2 per 21.3<br>mmbtu,only production,                   | T CO2 per 21.3 mmbtu,<br>NOT COUNTING                      | T CO2 per 21.3 mmbtu,<br>NOT COUNTING                     | T CO2 per 21.3 mmbtu,<br>NOT COUNTING                      | T CO2 per 21.3 mmbtu,<br>NOT COUNTING                   | T CO2 per 21.3 mmbtu,<br>NOT COUNTING                   | T CO2 per 21.3 mmbtu,<br>NOT COUNTING                      | T CO2 per 21.3<br>mmbtu, NOT                                   | T CO2 per 21.3<br>mmbtu, NOT                           |
| # of 10 MW plants that<br>can be run for 1 year, 45%                                                                                                         | 3.218-05                 | 188.0                                          | 1.93                         | 0.68                                                       | 1.23                                                       | 1.65                                                      | 1.48                                                       | 1.68                                                    | 2.42                                                    | 0.33                                                       | 1.80                                                           | 1.80                                                   |
| Equivalent # of 6 mtpa<br>LNG train (BTU basis)                                                                                                              | 6.87E-08                 | 0.40                                           |                              |                                                            |                                                            | CASE                                                      | NOTES                                                      |                                                         |                                                         |                                                            |                                                                | 1                                                      |
| Tonnes LNG equivalent                                                                                                                                        | 0.41                     | 2,403,830                                      | HAWAII d                     | istillate, res                                             | id and coal                                                | import (125                                               | T BTU)                                                     |                                                         |                                                         |                                                            |                                                                |                                                        |
| Metric Tonnes coal equiv                                                                                                                                     | 1.04                     | 6,097,520                                      |                              |                                                            |                                                            |                                                           |                                                            |                                                         |                                                         |                                                            |                                                                |                                                        |
| Tonnes oil equivalent<br>(TOE)                                                                                                                               | 0.500                    | 2,931,500                                      | Gas price -                  | \$40 per mmb                                               | otu                                                        |                                                           |                                                            |                                                         |                                                         |                                                            |                                                                |                                                        |
| Tonnes resid equiv                                                                                                                                           | 0.530                    | 3,107,390                                      | Power - \$3                  | 50 per mwh (                                               | about 80% fro                                              | om coal, resid                                            | and fuel oil)                                              |                                                         |                                                         |                                                            |                                                                |                                                        |
| Gal LPG equiv                                                                                                                                                | 234                      | 1,371,942,000                                  | This could I                 | oe displaced i<br>cargo shin de                            | by 6 mmt nn3<br>liveries per ve                            | (about 7.5 ar                                             | nmonia plant                                               | s)                                                      |                                                         |                                                            |                                                                |                                                        |
| Gal Gasoline equiv                                                                                                                                           | 172                      | 1,008,436,000                                  | Fuel cost fo                 | or ammonia p                                               | er vear - \$2.0                                            | bb. Fuel cost                                             | for power ('fr                                             | ree' heat fron                                          | n CHP) - <b>\$12</b> 5                                  | per                                                        |                                                                |                                                        |
| Gal Ethanol equiv                                                                                                                                            | 253                      | 1,483,339,000                                  | MWH.                         |                                                            |                                                            |                                                           |                                                            |                                                         | ,                                                       |                                                            |                                                                |                                                        |
| Price NH3                                                                                                                                                    | \$350                    |                                                | Fuel cost fo                 | or gas per yea                                             | r- \$3.7                                                   | bb. Fuel cost                                             | for power ('fr                                             | ree' heat fron                                          | n CHP) - \$228                                          | 8 per MWH.                                                 |                                                                |                                                        |
| Total NH3 cost \$                                                                                                                                            |                          | 2,052,050,000                                  | Fuel cost fo                 | or diesel per y                                            | ear - \$3.6                                                | bb. Fuel cost                                             | for power ('fr                                             | ee' heat from                                           | n CHP) - <b>\$28</b>                                    | 4per                                                       |                                                                |                                                        |
| Fuel cost for power,<br>\$/kwh from NH3                                                                                                                      | \$ 0.125                 |                                                | Evel cost fo                 | or coal per ve                                             | ar. \$0.3 l                                                | hh. Fuel cost f                                           | for nower ('fre                                            | ee' heat from                                           | CHD) - \$30                                             | ) per MWH                                                  |                                                                |                                                        |
| Price NATURAL GAS                                                                                                                                            | \$30.00                  |                                                | ruercostre                   | n courper ye                                               | ai                                                         | 55.146166561                                              | ion power ( in                                             | ce near nom                                             | ¢30                                                     | per mini                                                   |                                                                |                                                        |
| Total Natural Gas cost \$                                                                                                                                    |                          | \$ 3,746,457,000                               | Fuel price r                 | not the whole                                              | story.                                                     |                                                           |                                                            |                                                         |                                                         |                                                            |                                                                |                                                        |
| Fuel cost for power for<br>power, S/kwh from gas                                                                                                             | \$ 0.228                 |                                                | Ammonia r                    | nuch easier te                                             | o distribute ar                                            | nd store than                                             | coal or gas.                                               |                                                         |                                                         |                                                            |                                                                |                                                        |
| Price GASOLINE                                                                                                                                               | \$4.00                   |                                                | Ammonia r                    | nuch cleaner                                               | to burn and u                                              | ise than coal,                                            | resid or fuel o                                            | oil.                                                    |                                                         |                                                            |                                                                |                                                        |
| Total Gasoline cost \$                                                                                                                                       |                          | \$ 4,033,744,000                               | Ammonia of Se                | an be deploy                                               | ed for power<br>kw. With tur                               | gen at 40%+<br>n on/off in a f                            | efficiency at s                                            | cales betwee                                            | n 250 kw and                                            | 50 M. At a                                                 |                                                                |                                                        |
| Fuel cost for power,<br>\$/kwh from gasoline                                                                                                                 | \$ 0.313                 |                                                | Small scale                  | , clean combu                                              | ustion (500 kv                                             | v – 200 MW)                                               | greatly facilita                                           | ates CHP (hea                                           | ting, absorpti                                          | ive AC, hot                                                |                                                                |                                                        |
| Price LPG                                                                                                                                                    | \$4.00                   |                                                | water). Rai                  | sing efficienc                                             | y to 70-80% a                                              | nd displacing                                             | other heating                                              | g fuels (perha                                          | ps 50% additi                                           | onal to                                                    |                                                                |                                                        |
| Total LPG cost \$                                                                                                                                            |                          | \$ 5,487,768,000                               | electricity.                 | + \$250 - \$250                                            | ) por toppo is                                             | available from                                            | n \$2.\$4 and a                                            | round the we                                            | rld for this on                                         | tiro markat                                                |                                                                |                                                        |
| Fuel cost for power,<br>S/kwh from LPG                                                                                                                       | \$ 0.334                 |                                                | once the de                  | emand is esta                                              | blished. That                                              | existing dem                                              | and for fuel c                                             | oil, LPG, LNG ł                                         | nas establishe                                          | d much                                                     |                                                                |                                                        |
| Price DIESEL                                                                                                                                                 | \$4.00                   |                                                | higher price                 | es.                                                        |                                                            |                                                           |                                                            |                                                         |                                                         |                                                            |                                                                |                                                        |
| Total Diesel cost \$                                                                                                                                         |                          | \$ 3,658,512,000                               |                              |                                                            |                                                            |                                                           |                                                            |                                                         |                                                         |                                                            |                                                                |                                                        |
| Fuel cost for power,                                                                                                                                         | \$ 0.284                 |                                                |                              |                                                            |                                                            |                                                           |                                                            |                                                         |                                                         |                                                            |                                                                |                                                        |
| Price COAL                                                                                                                                                   | \$50                     |                                                |                              |                                                            |                                                            |                                                           |                                                            |                                                         |                                                         |                                                            |                                                                |                                                        |
| Total Coal cost \$                                                                                                                                           |                          | \$ 304,876,000                                 |                              |                                                            |                                                            |                                                           |                                                            |                                                         |                                                         |                                                            |                                                                |                                                        |
| Fuel cost for power,                                                                                                                                         | \$ 0.024                 |                                                |                              |                                                            |                                                            |                                                           |                                                            |                                                         |                                                         |                                                            |                                                                |                                                        |
| Price ETHANOL                                                                                                                                                | \$5.00                   |                                                |                              |                                                            |                                                            |                                                           |                                                            |                                                         |                                                         |                                                            |                                                                |                                                        |
| Total Ethanol cost \$                                                                                                                                        |                          | \$ 7,416,695.000                               |                              |                                                            |                                                            |                                                           |                                                            |                                                         |                                                         |                                                            |                                                                |                                                        |
| Fuel cost for power,                                                                                                                                         | \$ 0.452                 |                                                |                              |                                                            |                                                            |                                                           |                                                            |                                                         |                                                         |                                                            |                                                                |                                                        |

#### Hawaii resid/distillate

Most of Hawaii's electricity is generated from heavy hydrocarbons. This is expensive (HI power more than 3X cost of mainland) and environmentally destructive, 35-40 cents/kwh). Hawaii is working very hard to reduce hydrocarbon reliance (small scale LNG, renewables energy efficiency).

There is great scope for this since power is so expensive. But the cheapest way is through ammonia.

Displacing all of HI resid, fuel oil and coal about equivalent to 6 MMTPA NH3 (about 7 plants or 140 cargo ship deliveries.) Ammonia at \$350/tonne has a fuel cost of 13 cents / kwh (not counting credit for CHP from ammonia diesel gen sets).

Think also – Caribbean, Indonesia, Greece, Philippines



| NEIC                                                                                                                                                          | GHBC                               | RHOOD ENE                                      | RGY STATI                          | ON (LIKE A                                               | GAS STATIO                                             | N) Dispensi                                               | ng 1.75 MM                                           | Gals Per Ye                                             | ar Of Amm                                               | onia                                                     |                                                                |                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------|------------------------------------|----------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|
| мо                                                                                                                                                            | DEL RESU                           | JLTS                                           |                                    |                                                          |                                                        | COST, T                                                   | HERMO AND CO2                                        | MATRIX                                                  |                                                         |                                                          |                                                                |                                                      |
| USER INPUTS<br>ALLOWED IN GREEN<br>CELLS                                                                                                                      | ALL<br>VALUES<br>EQUIV 1<br>MT NH3 | ALL VALUES<br>CORRESPOND TO CASE<br>PARAMETERS |                                    | AMMONIA                                                  | NATURAL GAS                                            | GASOLINE                                                  | LPG                                                  | DIESEL                                                  | COAL                                                    | ETHANOL                                                  | METHANOL                                                       | DME                                                  |
| REQUIRED INPUT or<br>CALCULATE Tonnes NH3<br>for your scenario in D4                                                                                          | 1.00                               | 4,060                                          |                                    | INPUT Price of NH3<br>delivered to site, \$<br>per tonne | INPUT Price of gas<br>delivered to site, \$ /<br>mmbtu | INPUT Price of<br>gasoline delivered to<br>site, \$ / gal | INPUT Price of LPG<br>delivered to site, \$ /<br>gal | INPUT Price of diesel<br>delivered to site, \$ /<br>gal | INPUT Price of coal<br>delivered to site, \$ /<br>tonne | INPUT Price of<br>ethanol delivered to<br>site, \$ / gal | INPUT Price of<br>methanol<br>delivered to site, \$<br>/ tonne | INPUT Price of DN<br>delivered to site, 5<br>/ tonne |
| OPTIONAL USER-<br>DEFINED VARIABLE.<br>ENTER VARIABLE NAME<br>IN THIS CELL, ENTER (1 T<br>NH3 BASIS) IN CS.<br>ITERATE ON TO ACHEVE<br>DESIRED QUANTITY IN DS |                                    | 0.00                                           |                                    | \$350                                                    | \$15.00                                                | \$3.00                                                    | \$2.00                                               | \$3.80                                                  | \$50                                                    | \$3.00                                                   | \$200                                                          | \$290                                                |
| MMBTU (or 1000 CF gas<br>equiv) contained in NH3                                                                                                              | 21.32                              | 86,558                                         |                                    |                                                          | MMBTU gas for 21.3<br>MMBTU                            | Gal gasoline for 21.3<br>MMBTU                            | Gal LPG for 21.3 MMBTU                               | Gal diesel for 21.3<br>MMBTU                            | Tonnes coal for 21.3<br>MMBTU                           | Gal ethanol for 21.3<br>MMBTU                            | Tonnes methanol for<br>21.3 MMBTU                              | Tonnes DME for 21.1<br>MMBTU                         |
| MMBTU gas required for<br>NH3                                                                                                                                 | 32.0                               | 129,930                                        |                                    | 11                                                       | 21.1                                                   | 172                                                       | 234                                                  | 4 154                                                   | : 1J                                                    | 25                                                       | 0.982                                                          | a:                                                   |
| TCF natural gas required<br>for NH3                                                                                                                           | 2.946-08                           | 0.000                                          |                                    | NH3 Fuel Cost (for 21.3<br>mmbtu) - This Scenario        | Gas Fuel Cost (for 21.3<br>mmbtu) - This Scenario      | 21.3 mmbtu) - This<br>Scenario                            | LPG Fuel Cost (for 21.3<br>mmbtu) - This Scenario    | Diesel Fuel Cost (for 21.3<br>mmbtu) - This Scenario    | Coal Fuel Cost (for 21.3<br>mmbtu) - This Scenario      | 21.3 mmbtu) - This<br>Scenario                           | (for 21.3 mmbtu) -<br>This Scenario                            | 21.3 mmbtu) - This<br>Scenario                       |
| Tonnes water produced<br>from NH3                                                                                                                             | 1.588+00                           | 6,415                                          |                                    | \$350<br>kwh from 21.3 mmbtu ai                          | \$320                                                  | \$516                                                     | \$468<br>kwh from 21.3 mmbtu at                      | \$593                                                   | \$53                                                    | \$759 kwh from 21.3 mmbtu at                             | \$196                                                          | \$20<br>kwh from 21.3                                |
| # Global ammonia<br>industry                                                                                                                                  | 6.672-09                           | 0.000                                          |                                    | 45% efficiency (gas/nh3<br>like)                         | 45% efficiency (gas/nh3<br>like)                       | kwh from 21.3 mmbtu at<br>35% efficiency (coal like)      | 45% efficiency (gas/nh3<br>like)                     | kwh from 21.3 mmbtu at<br>35% efficiency (coal like)    | kwh from 21.3 mmbtu a<br>35% efficiency (coal like)     | 45% efficiency (gas/nh3<br>like)                         | mmbtu at 45%<br>efficiency (gas/nh3                            | mmbtu at 45%<br>efficiency (gas/nh3                  |
| # of World Scale NH3<br>Plants                                                                                                                                | 1.258-06                           | 0.01                                           |                                    | 280                                                      | 2800                                                   | 2200                                                      | 2800                                                 | 220                                                     | 220                                                     | 280                                                      | 2800<br>Fuel cost for power,                                   | 28                                                   |
| Number of 60,000 cbm<br>vessels                                                                                                                               | 2.448-05                           | 0                                              |                                    | Fuel cost for power,<br>S/kwh from NH3                   | Fuel cost for power for<br>power, S/kwh from gas       | Fuel cost for power,<br>S/kwh from gasoline               | Fuel cost for power,<br>\$/kwh from LPG              | Fuel cost for power,<br>S/kwh from diesel               | Fuel cost for power,<br>\$/kwh from coal                | Fuel cost for power,<br>S/kwh from coal                  | S/kwh from<br>methanol                                         | Fuel cost for power,<br>S/kwh from DME               |
| Number of 80 tonne<br>railcar deliveries                                                                                                                      | 0.0125                             | 51                                             |                                    | \$0.125                                                  | \$0.114                                                | \$0.235                                                   | \$0.167                                              | \$0.269                                                 | \$0.024                                                 | \$0.271                                                  | \$0.070                                                        | \$0.07                                               |
| pipeline                                                                                                                                                      | 1.008-06                           | 0.0                                            | CCS<br>T CO2 per 21.3              | HARVEST<br>T CO2 per 21.3                                | NATURAL GAS                                            | GASOLINE<br>T CO2 per 21.3 mmbtu,                         | LPG<br>T CO2 per 21.3 mmbtu,                         | DIESEL<br>T CO2 per 21.3 mmbtu,                         | COAL<br>T CO2 per 21.3 mmbtu,                           | ETHANOL<br>T CO2 per 21.3 mmbtu,                         | METHANOL<br>T CO2 per 21.3                                     | DME<br>T CO2 per 21.3                                |
| power plants                                                                                                                                                  | 2.818+00                           | 11,410                                         | mmbtu,only<br>production, no CCS   | mmbtu,only production,<br>CO2 harvest                    | NOT COUNTING<br>UFECYCLE                               | NOT COUNTING<br>LIFECYCLE                                 | NOT COUNTING<br>UFECYCLE                             | NOT COUNTING<br>LIFECYCLE                               | NOT COUNTING<br>UFECYCLE                                | NOT COUNTING<br>UFECYCLE                                 | mmbtu, NOT<br>COUNTING LIFECYCLE                               | mmbtu, NOT<br>COUNTING LIFECYCL                      |
| can be run for 1 year, 45%                                                                                                                                    | 3.218-05                           | 0.1                                            | 1.93                               | 0.68                                                     | 1.23                                                   | 1.65                                                      | 1.48                                                 | 1.68                                                    | 2.42                                                    | 0.33                                                     | 1.80                                                           | 1.8                                                  |
| Equivalent II of 6 mtpa<br>LNG train (BTU basis)                                                                                                              | 6.878-08                           | 0.00                                           | 1                                  |                                                          | 1.75 14- 0-1-0-                                        | CASE                                                      | NOTES                                                |                                                         |                                                         |                                                          |                                                                |                                                      |
| Tonnes LNG equivalent                                                                                                                                         | 0.41                               | 1,665                                          | A typical high y                   | volume gasoline st                                       | tation can easily d                                    | issense 1.5 MM g                                          | allons of multiple                                   | grades of gasoline                                      | /diecel in a year                                       | This case                                                |                                                                |                                                      |
| Metric Tonnes coal equiv                                                                                                                                      | 1.04                               | 4,223                                          | examines a 'ne                     | ighborhood' amn                                          | nonia energy statio                                    | on of approximate                                         | ly the same scale                                    | that could provid                                       | e power and heat                                        | to the                                                   |                                                                |                                                      |
| Tonnes oil equivalent<br>(TOE)                                                                                                                                | 0.500                              | 2,030                                          | ammonia. The                       | prototype for thi                                        | s is the MHI Mega                                      | Ninja gas-driven g                                        | enset (delivered o                                   | on 40' trailer, 1.5 I                                   | MW generator op                                         | erating at 42.5%                                         |                                                                |                                                      |
| Tonnes resid equiv                                                                                                                                            | 0.530                              | 2,152                                          | adsorptive air o                   | conditioning.)                                           | a near/power tak                                       | ing enciency up o                                         | o 75% for median                                     | r pressure steamy                                       | space and water i                                       | reating and                                              |                                                                |                                                      |
| Gal LPG equiv                                                                                                                                                 | 234                                | 950,116                                        | The general con                    | mplexity of these                                        | stations would be                                      | e less than a gasoli                                      | ne station (single                                   | grade, dispensed                                        | almost entirely to                                      | the generators                                           |                                                                |                                                      |
| Gal Gasoline equiv                                                                                                                                            | 172                                | 698,376                                        | and fuel delive                    | ry logistics would                                       | be similar.                                            |                                                           | a paone per augy.                                    | but tank volume,                                        | generarregalator                                        | y requirements                                           |                                                                |                                                      |
| Gal Ethanol equiv                                                                                                                                             | 253                                | 1,027,262                                      | The average we                     | eekly volume wou                                         | ild be about 35,00                                     | 0 gallons. We car                                         | design' for 40,0                                     | 00 gal/week peak                                        | usage. A typical t                                      | ank size for                                             |                                                                |                                                      |
| Gal Ethanol equiv                                                                                                                                             | 253                                | 1,027,262                                      | The average we                     | eekly volume wou<br>ibutors is 30.000 g                  | Id be about 35,00<br>allons. So, with o                | 0 gallons. We can<br>ne 30.000 gal tan                    | 'design' for 40,00<br>k (installed under             | 00 gal/week peak<br>ground for safety.                  | usage. A typical t<br>security and ease                 | ank size for<br>of                                       |                                                                |                                                      |
| Price NH3                                                                                                                                                     | \$350                              |                                                | temp/pressure<br>I'm sure the log  | maintenance), w                                          | e could operate w<br>optimized beyond                  | ith three a week of that, but this will                   | eliveries from 11<br>do for illustration             | ,500 gal tank truck                                     | ks (typical size am                                     | monia trucks).                                           |                                                                |                                                      |
| Total NH3 cost \$                                                                                                                                             |                                    | 1,421,114                                      | Very rough pro                     | oject costs would                                        | be about \$1.2 MM                                      | A for ammonia M                                           | egaNinja, \$0.1 M                                    | M for undergrour                                        | id tank, connectio                                      | ons and land.                                            |                                                                |                                                      |
| Fuel cost for power,<br>\$/kwh from NH3                                                                                                                       | \$ 0.125                           |                                                | Roughly \$1.5-\$                   | 2 MM.                                                    |                                                        |                                                           |                                                      |                                                         |                                                         |                                                          |                                                                |                                                      |
| Price NATURAL GAS                                                                                                                                             | \$15.00                            |                                                | With these deli<br>would be availa | ivery assumptions<br>able 100% of the f                  | (1.75 MM gal am<br>time (minus maint                   | monia/year), a 1.5<br>enance) and could                   | 5 MW Meganinja<br>d be run at the cos                | can be supplied 8<br>st of more freque                  | 5% of the time (.1<br>nt ammonia delive                 | 3/.15). The unit<br>tries. We can                        |                                                                |                                                      |
| Total Natural Gas cost \$                                                                                                                                     |                                    | \$ 1,297,274                                   | model this as                      |                                                          |                                                        |                                                           |                                                      |                                                         |                                                         |                                                          |                                                                |                                                      |
| Fuel cost for power for<br>power, S/kwh from gas                                                                                                              | \$ 0.114                           |                                                | A CHP unit that<br>offered at belo | t is integrated into<br>w cost/value of lo               | the local electric<br>cal power and he                 | al grid, sells exces<br>at supply. For exa                | s power into the g<br>mple, buying low               | rid and buys pow<br>cost base load pov                  | er from the grid w<br>wer at night from                 | rhen power is<br>utility based on                        |                                                                |                                                      |
| Price GASOLINE                                                                                                                                                | \$3.00                             |                                                | TOD pricing and                    | d operating durin                                        | g the day to ease                                      | peak power dema                                           | nd on the utility's                                  | peakers)                                                |                                                         |                                                          |                                                                |                                                      |
| Total Gasoline cost \$                                                                                                                                        |                                    | \$ 2,095,128                                   | Runs 85% of th<br>the mmbtu's in   | e time routinely (<br>the 1.75 mm gal                    | providing 1.5 MW<br>of ammonia)). W                    | for 7450 hrs for 1<br>e will assume con:                  | 1,200,000 kwh an<br>servatively that 15              | nd 26,000 mmbtu<br>5,000 mmbtu of th                    | of CHP heat (calcu<br>nat heat would be                 | lated as 30% of<br>effectively used                      |                                                                |                                                      |
| Fuel cost for power,<br>S/kwh from gasoline                                                                                                                   | \$ 0.235                           |                                                | or sold.                           |                                                          |                                                        |                                                           |                                                      |                                                         |                                                         |                                                          |                                                                |                                                      |
| Price LPG                                                                                                                                                     | \$2.00                             |                                                | At \$300/tonne,                    | , 1.75 mm tonnes                                         | of ammonia costs                                       | \$1.2 MM                                                  |                                                      |                                                         |                                                         |                                                          |                                                                |                                                      |
| Total LPG cost \$                                                                                                                                             |                                    | \$ 1,900,232                                   | If we assume N<br>residential cust | lew England/Mide<br>tomers (especially                   | dle Atlantic urban<br>conservative in t                | environments, the<br>he winter). Sales (                  | or avoided costs of                                  | and \$14 per MMB<br>of gas/power pure                   | TU are conservati<br>hases) of the pow                  | ve prices for<br>ver and CHP heat                        |                                                                |                                                      |
| Fuel cost for power,<br>S/kwh from LPG                                                                                                                        | \$ 0.167                           |                                                | from 85% oper                      | ation at these pri-                                      | ces would yield \$1                                    | 57 MM for powe                                            | r and \$0.21 MM f                                    | or heat for a total                                     | of \$1.78 MM.                                           |                                                          |                                                                |                                                      |
| Price DIESEL                                                                                                                                                  | \$3.80                             |                                                | At \$300/tonne<br>year that kwh a  | ammonia, the fue<br>are valued at high                   | el cost for power (<br>er than \$0.11 per              | even rejecting all<br>kwh, the generato                   | the CHP heat) is \$<br>or can be operated            | 0.107 per kwh. So<br>d for additional pr                | o, for the addition<br>ofit. For example                | al 15% of the<br>, in New                                |                                                                |                                                      |
| Total Diesel cost \$                                                                                                                                          |                                    | \$ 2,406,961                                   | England/Middle<br>of a year (1300  | e Atlantic region,<br>hrs), we are selli                 | retail electricity p<br>ng 2,000,000 kwh               | rices are uniforml<br>at a margin of \$0.                 | y above \$0.16 per<br>05 (bringing in \$1)           | kwh. So, if we ar<br>00,000 extra reve                  | re running a 1500<br>nue).                              | kw unit for 15%                                          |                                                                |                                                      |
| Fuel cost for power,<br>S/kwh from diesel                                                                                                                     | \$ 0.269                           |                                                | Overview on ve                     | ery rough number                                         | s running the busi                                     | iness blind (i.e, sel                                     | ling at average pr                                   | ices, managing CH                                       | IP heat and extra                                       | power sales                                              |                                                                |                                                      |
| Price COAL                                                                                                                                                    | \$50                               |                                                | loosely)<br>Fuel cost at \$30      | 00/tonne - \$1,200                                       | ,000                                                   |                                                           |                                                      |                                                         |                                                         |                                                          |                                                                |                                                      |
| Total Coal cost \$                                                                                                                                            |                                    | \$ 211,137                                     | Revenues from<br>Opportunistic s   | 85% base operat<br>sales of power for                    | ions (contracted a<br>other 15% of gen                 | t conservative pri<br>erating capacity –                  | ces) - \$1,780,000<br>\$100,000                      |                                                         |                                                         |                                                          |                                                                |                                                      |
| Fuel cost for power,<br>S/kwh from coal                                                                                                                       | \$ 0.024                           |                                                | Operating mar                      | gin of \$680,000 t                                       | o cover capex/op                                       | ex/profit.                                                |                                                      |                                                         |                                                         |                                                          |                                                                |                                                      |
| Price ETHANOL                                                                                                                                                 | \$3.00                             |                                                | Upside potenti                     | al on these reven                                        | ues.                                                   |                                                           |                                                      |                                                         |                                                         |                                                          |                                                                |                                                      |
| Total Ethanol cost \$                                                                                                                                         |                                    | \$ 3,081,787                                   | Capacity payme<br>whether the un   | ents from PJM RP<br>nit is running or n                  | M (market to pay<br>ot). This is \$73,00               | for guaranteed ca<br>0 per year.                          | pacity in PJM grid                                   | l). In New York, th                                     | iis is about \$200 p                                    | er MW (paid                                              |                                                                |                                                      |
| Fuel cost for power,<br>S/kwh from ethanol                                                                                                                    | \$ 0.271                           |                                                | Potential paym                     | ents from reliabil                                       | ity premiums from                                      | n the grid (this pow                                      | wer is much more                                     | reliable than grid                                      | provided power (                                        | no risk from gas                                         |                                                                |                                                      |
| MegaTonnes CO2 saved<br>with NH3 with harvest vs                                                                                                              | 5.506-07                           | 0                                              | deliverability, d                  | downed power lin                                         | es, frozen equipm                                      | ent, price spikes f                                       | rom hot summer                                       | afternoons, etc).                                       |                                                         |                                                          |                                                                |                                                      |

#### Local Energy Station Dispensing 1.75 Mm Gals Per Year Of Ammonia

A typical high volume gasoline station can easily dispense 1.5 MM gallons of multiple grades of gasoline/diesel in a year. This case examines a 'neighborhood' ammonia energy station of approximately the same scale that could provide power and heat to the neighborhood (or condo or office building) in an urban environment. This station would house a diesel genset/CHP unit running on ammonia. The prototype for this a gas-driven genset (delivered on 40' trailer, 1.5 MW generator operating at 42.5% efficiency, designed for combined heat/power taking efficiency up to 75% for medium pressure steam/space and water heating and adsorptive air conditioning.)

The general complexity of these stations would be less than a gasoline station (single grade, dispensed almost entirely to the generators instead of retail interface with hundreds of transactions to untrained public per day). But tank volume, general regulatory requirements and fuel delivery logistics would be similar.

The average weekly volume would be about 35,000 gallons. We can 'design' for 40,000 gal/week peak usage. A typical tank size for ammonia distributors is 30,000 gallons. So, with one 30,000 gal tank (installed underground for safety, security and ease of temp/pressure maintenance), we could operate with three a week deliveries from 11,500 gal tank trucks (typical size ammonia trucks). I'm sure the logistics can/will be optimized beyond that, but this will do for illustration.



ິ 🕹 ບ

| 1/8 of midwest propane demand and IL annual purchase of NH3 (1 MM tonnes)                                                                                    |                          |                                                |                                    |                                                            |                                                             |                                                           |                                                            |                                                         |                                                         |                                                           |                                                           |                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------|------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------|
| MODEL RESULTS COST, THERMO AND CO2 MATRIX                                                                                                                    |                          |                                                |                                    |                                                            |                                                             |                                                           |                                                            |                                                         |                                                         |                                                           |                                                           |                                                        |
| USER INPUTS<br>ALLOWED IN GREEN<br>CELLS                                                                                                                     | ALL<br>VALUES<br>EQUIV 1 | ALL VALUES<br>CORRESPOND TO CASE<br>PARAMETERS |                                    | AMMONIA NATURAL GAS GASOLINE LPG                           |                                                             | LPG                                                       | DIESEL                                                     | COAL                                                    | ETHANOL                                                 | METHANOL                                                  | DME                                                       |                                                        |
| REQUIRED INPUT or<br>CALCULATE Tonnes NH3<br>for your scenario in D4                                                                                         | 1.00                     | 1,000,000                                      |                                    | INPUT Price of NH3<br>delivered to site, S<br>per tonne    | INPUT Price of gas<br>delivered to site, \$ /<br>mmbtu      | site, \$ / gal                                            | INPUT Price of LPG<br>delivered to site, \$ /<br>gal       | INPUT Price of diesel<br>delivered to site, \$ /<br>gal | INPUT Price of coal<br>delivered to site, \$ /<br>tonne | INPUT Price of<br>ethanol delivered to<br>site, \$ / gal  | INPUT Price of<br>methanol<br>delivered to site, \$       | INPUT Price of DME<br>delivered to site, \$<br>/ tonne |
| OPTIONAL USER-<br>CERTER VARIABLE.<br>ENTER VARIABLE NAME<br>IN THIS CELL. ENTER (3 T<br>AND BASIS) IN CS.<br>ITERATE D4 TO ACHEVE<br>DESIRED QUANTITY IN D5 |                          | 0.00                                           |                                    | \$350                                                      | \$12.00                                                     | \$4.00                                                    | \$3.50                                                     | \$4.00                                                  | \$100                                                   | \$4.00                                                    | \$300                                                     | 5420                                                   |
| MMBTU (or 1000 CF gas<br>equiv) contained in NH3                                                                                                             | 21.92                    | 21,318,000                                     |                                    | Tonnes NH3 for 21.3<br>MMBTU                               | MMBTU gas for 21.3<br>MMBTU                                 | Gal gasoline for 21.3<br>MMBTU                            | Gal UPG for 21.3 MMBTU                                     | Gal diesel for 21.3<br>MMBTU                            | Tonnes coal for 21.3<br>MMBTU                           | Gal ethanol for 21.3<br>MMBTU                             | Tonnes methanol for<br>21.3 MMBTU                         | Tonnes DME for 21.3<br>MMBTU                           |
| MMBTU gas required for<br>NH3                                                                                                                                | \$2.0                    | 32,000,000                                     |                                    | 14                                                         | 21.3                                                        | 177                                                       | 234                                                        | 15                                                      |                                                         | 25                                                        | 0.94                                                      | 6.71                                                   |
| TCF natural gas required<br>for NH3                                                                                                                          | 2346.08                  | 0.029                                          |                                    | NH3 Fuel Cost (for 21.3<br>mmbtu) - This Scenario          | Gas Fuel Cost (for 21.3<br>mmbtu) - This Scenario           | Gasoline Fuel Cost (for<br>21.3 mmbtu) - This<br>Scenario | UPG Fuel Cost (for 21.3<br>mmbtu) - This Scenario          | Diesel Fuel Cast (for 21.3<br>mmbtu) - This Scenario    | Coal Fuel Cost (for 21.3<br>mmbtu) - This Scenario      | Ethanol Fuel Cost (for<br>21.3 mmbtu) - This<br>Scenario  | Methanol Fuel Cost<br>(for 21.3 mmbtu) -<br>This Scenario | DME Fuel Cost (for<br>21.3 mmbtu) - This<br>Scenario   |
| Tonnes water produced<br>from NH3                                                                                                                            | 1.586-00                 | 1,580,000                                      |                                    | \$350                                                      | \$256                                                       | 5688                                                      | 5819                                                       | \$624                                                   | \$104                                                   | \$1,013                                                   | \$294                                                     | \$298                                                  |
| # Global ammonia<br>industry                                                                                                                                 | 6.676-09                 | 0.007                                          |                                    | kwh from 21.3 mmbtu at<br>45% efficiency (gas/nh3<br>like) | (kwh from 21.3 mmbtu at<br>45% efficiency (gas/nh3<br>like) | kwh from 21.3 mmbtu at<br>35% efficiency (coal like)      | kwh from 21.3 mmbtu at<br>45% efficiency (gas/nh3<br>like) | kwh from 21.3 mmbtu at<br>35% efficiency (coal like)    | kwh from 21.3 mmbtu at<br>35N efficiency (coal like)    | kwh from 21.3 mmbtu at<br>45% efficiency (gas/nh3<br>8ke) | kwh from 21.3<br>mmbtu at 45%<br>efficiency (gas/nh3      | kwh from 21.3<br>mmbtu at 45%<br>efficiency (gas/nh3   |
| # of World Scale NH3<br>Plants                                                                                                                               | 1296-06                  | 1.25                                           |                                    | 2600                                                       | 2800                                                        | 2200                                                      | 2800                                                       | 2200                                                    | 220                                                     | 280                                                       | 280                                                       | 2800                                                   |
| Number of 60,000 dam<br>vessels                                                                                                                              | 2446-05                  | 24                                             |                                    | Fuel cost for power,<br>\$/kwh from NH3                    | Fuel cost for power for<br>power, 5/kwh from gas            | Fuel cost for power,<br>\$/kwh from gasoline              | Fuel cost for power,<br>S/kwh from LPG                     | Fuel cost for power,<br>\$/kwh from diese!              | Fuel cost for power,<br>\$/kwh from coal                | Fuel cast for power,<br>S/kwh from coal                   | S/kwh from<br>methanol                                    | Fuel cast for power,<br>S/kwh from DME                 |
| Number of 80 tonne<br>raikar deliveries                                                                                                                      | 6.0125                   | 12,500                                         |                                    | \$0.125                                                    | \$0.091                                                     | \$0.313                                                   | \$0.293                                                    | \$0.284                                                 | \$0.047                                                 | \$0.363                                                   | \$0.105                                                   | \$0.107                                                |
| # of 1 MM TPA NH3<br>pipeline                                                                                                                                | 1.005-06                 | 1.0                                            | AMMONIA, NO<br>CCS                 | AMMONIA w/<br>HARVEST                                      | NATURAL GAS                                                 | GASOLINE<br>T CO2 per 23-3 mmbro                          | LPG                                                        | DIESEL<br>T CO2 per 23-3 mentes                         | COAL                                                    | ETHANOL<br>T CO2 per 21.3 mmbm                            | METHANOL                                                  | DME<br>T CO2 per 21.3                                  |
| MWh from 45% efficient<br>power plants                                                                                                                       | 2.812-00                 | 2,810,000                                      | membru, only<br>production, no CCS | membru, only production,<br>CO2 harvest                    | NOT COUNTING<br>UPECYCLE                                    | NOT COUNTING<br>UPECYCLE                                  | NOT COUNTING<br>UPECYCLE                                   | NOT COUNTING<br>UFECYCLE                                | NOT COUNTING<br>UFECYCLE                                | NOT COUNTING<br>UFECYCLE                                  | COUNTING LIFECYCLE                                        | counting LIFECYCLE                                     |
| e of 20 MW plants that<br>can be run for 1 year, 45%                                                                                                         | 3.218-05                 | 32.1                                           | 1.93                               | 0.68                                                       | 1.23                                                        | 1.65                                                      | 1.48                                                       | 1.68                                                    | 2.42                                                    | 0.33                                                      | 1.80                                                      | 1.80                                                   |
| Equivalent # of 6 mtpa<br>LNG train (8TU basis)                                                                                                              | 6.872-08                 | 0.07                                           | Midurat                            | Contilizer 11-                                             | at and Ele                                                  | CASE                                                      | NOTES                                                      |                                                         |                                                         |                                                           |                                                           |                                                        |
| Tonnes UNG equivalent                                                                                                                                        | 0.41                     | 410,000                                        | wiidwest                           | Fertilizer, He                                             | eat and Elect                                               | ricity                                                    |                                                            |                                                         |                                                         |                                                           |                                                           |                                                        |
| Metric Tonnes coal equiv                                                                                                                                     | 1.54                     | 1,040,000                                      | The Midwest                        | tern states ran o                                          | dangerously lov<br>g availability of                        | v of LPG for hea                                          | at and farm use                                            | this winter with                                        | h emergency m                                           | easures                                                   |                                                           |                                                        |
| (106)                                                                                                                                                        | 6.500                    | 500,000                                        | of propane v                       | was strained by                                            | high demand fo                                              | or drying extra v                                         | wet crops follow                                           | ved by record c                                         | old.                                                    | ry and storage                                            |                                                           |                                                        |
| Tonnes resid equiv                                                                                                                                           | 0.530                    | 530,000                                        | Prices rose to                     | o \$4-5 per gallo                                          | n (normally aro                                             | und \$2). And a                                           | lot of people g                                            | ot really cold a                                        | nd mad.                                                 |                                                           |                                                           |                                                        |
| Gal LPG equiv                                                                                                                                                | 254                      | 234,000,000                                    |                                    |                                                            |                                                             |                                                           |                                                            |                                                         |                                                         |                                                           |                                                           |                                                        |
| Gal Gasoline equiv                                                                                                                                           | 172                      | 172,000,000                                    | l've modelle<br>ammonia fe         | d ammonia equ<br>rtilizer), If 12.5                        | ivalent to 12.5%<br>% of LPG dema                           | 6 of Midwest p<br>od were stored                          | ropane demand<br>at ammonia fac                            | l (also equivale<br>ilities at the en                   | nt to Illinois der<br>d of harvesting                   | mand for<br>and the start                                 | l                                                         |                                                        |
| Gal Ethanol equiv                                                                                                                                            | 253                      | 253,000,000                                    | of winter (w                       | hen these facili<br>ubstantial cushi                       | ties are operati                                            | ng low because<br>g the costs and                         | they are most<br>risks of LPG sh                           | full before and<br>ortages. This is                     | during planting                                         | season), this<br>30 MM gal                                |                                                           |                                                        |
| Total NH3 cost \$                                                                                                                                            |                          | 350,000,000                                    | LPG (replace<br>equivalent B       | ed by 1 MM ton<br>STUs of LPG at \$                        | nes ammonia).<br>2/gal is \$468 M                           | The total cost<br>IM and at \$4/ga                        | of that ammoni<br>al is \$936 MM.                          | a at \$350/tonn<br>There clearly is                     | e is \$350 MM.<br>large financial                       | The cost of the<br>incentive even                         |                                                           |                                                        |
| Fuel cost for power,<br>S/kuch form MET                                                                                                                      | 5 0.125                  |                                                | without the                        | consideration o                                            | of risk managem                                             | ient.                                                     |                                                            | , .                                                     | 6-                                                      |                                                           |                                                           |                                                        |
| Price NATURAL GAS                                                                                                                                            | \$12.00                  |                                                | If Sturman e                       | engine 1.0 MW                                              | units (40' trailer                                          | s with Sturman                                            | fitted control s                                           | ystems) were s                                          | ited on farms a                                         | nd                                                        |                                                           |                                                        |
| Total Natural Gas cost \$                                                                                                                                    |                          | \$ 255,600,000                                 | units are als                      | o ideally suited                                           | for CHP (total e                                            | fficiency up to                                           | 75% or so) which                                           | th can be used                                          | for district heat                                       | ing and, very                                             |                                                           |                                                        |
| Fuel cost for power for<br>power, S/kwh from gas                                                                                                             | \$ 0.091                 |                                                | importantly,                       | , crop drying.                                             |                                                             |                                                           |                                                            |                                                         |                                                         |                                                           |                                                           |                                                        |
| Price GASOLINE                                                                                                                                               | 54.00                    |                                                | One other h<br>winter and s        | uge advantage<br>pring (for plant                          | is countercyclic<br>ing) and the LP                         | al infrastructur<br>G infrastructure                      | e use. The amn<br>e is weighted to                         | nonia infrastruc<br>ward summer a                       | ture is weighte<br>and fall (for cro                    | d toward<br>p drying and                                  |                                                           |                                                        |
| Total Gasoline cost \$                                                                                                                                       |                          | \$ 688,000,000                                 | winter heati                       | ing). The ammo                                             | onia producers v                                            | will be happy to                                          | have profitable                                            | e smoothing of                                          | their storage ar                                        | nd distribution.                                          |                                                           |                                                        |
| Fuel cost for power,<br>S/kwh from gasoline                                                                                                                  | 5 0.313                  |                                                |                                    |                                                            |                                                             |                                                           |                                                            |                                                         |                                                         |                                                           |                                                           |                                                        |
| Price UPG                                                                                                                                                    | \$3.50                   |                                                |                                    |                                                            |                                                             |                                                           |                                                            |                                                         |                                                         |                                                           |                                                           |                                                        |
| Total LPG cost S                                                                                                                                             |                          | \$ 819,000,000                                 |                                    |                                                            |                                                             |                                                           |                                                            |                                                         |                                                         |                                                           |                                                           |                                                        |
| Fuel cost for power,<br>\$/kwh from LPG                                                                                                                      | \$ 0.293                 |                                                |                                    |                                                            |                                                             |                                                           |                                                            |                                                         |                                                         |                                                           |                                                           |                                                        |
| Price DIESEL                                                                                                                                                 | \$4.00                   |                                                |                                    |                                                            |                                                             |                                                           |                                                            |                                                         |                                                         |                                                           |                                                           |                                                        |
| Yotal Diesel cost \$                                                                                                                                         |                          | \$ 624,000,000                                 |                                    |                                                            |                                                             |                                                           |                                                            |                                                         |                                                         |                                                           |                                                           |                                                        |
| Fuel cost for power,<br>S/kwh from diesel                                                                                                                    | \$ 0.284                 |                                                |                                    |                                                            |                                                             |                                                           |                                                            |                                                         |                                                         |                                                           |                                                           |                                                        |
| Price COAL                                                                                                                                                   | \$100                    |                                                |                                    |                                                            |                                                             |                                                           |                                                            |                                                         |                                                         |                                                           |                                                           |                                                        |
| Total Coal cost \$                                                                                                                                           |                          | \$ 104,000,000                                 |                                    |                                                            |                                                             |                                                           |                                                            |                                                         |                                                         |                                                           |                                                           |                                                        |
| \$/kwh from coal                                                                                                                                             | \$ 0.047                 |                                                |                                    |                                                            |                                                             |                                                           |                                                            |                                                         |                                                         |                                                           |                                                           |                                                        |
| Price ETHANOL                                                                                                                                                | 54.00                    |                                                |                                    |                                                            |                                                             |                                                           |                                                            |                                                         |                                                         |                                                           |                                                           |                                                        |
| Total Ethanol cost 5                                                                                                                                         |                          | \$ 1,012,000,000                               |                                    |                                                            |                                                             |                                                           |                                                            |                                                         |                                                         |                                                           |                                                           |                                                        |
| S/kwh from ethanol                                                                                                                                           | 5 0.361                  |                                                |                                    |                                                            |                                                             |                                                           |                                                            |                                                         |                                                         |                                                           | 1                                                         |                                                        |

#### MidWest LPG Demand

The Midwestern states ran dangerously low of LPG for heat and farm use this winter with emergency measures required. Even with growing availability of propane from shale oil and gas, the infrastructure for delivery and storage of propane was strained by high demand for drying extra wet crops followed by record cold.

Prices rose to \$4-5 per gallon (normally around \$2). And a lot of people got really cold and mad.

1/8 of MidWest LPG demand is 1 MM TPA NH3. Even at \$500 per tonne, ammonia BTUs are 20% cheaper than \$4/gal LPG.

If ammonia diesel gens were sited on farms and neighborhoods, they would produce well-conditioned power for local use and utility offtake at 45% efficiency. The units are also ideally suited for CHP (total efficiency up to 75% or so) which can be used for district heating and, very importantly, crop drying.

One other huge advantage is countercyclical infrastructure use. The ammonia infrastructure is weighted toward winter and spring (for planting) and the LPG infrastructure is weighted toward summer and fall (for crop drying and winter heating). The ammonia producers might be happy to have profitable smoothing of their storage and distribution.



