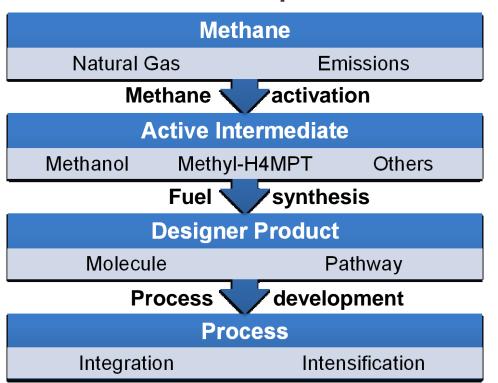
Biological Technologies for Methane-to-Liquids ARPA-E Workshop

Ramon Gonzalez, Program Director Advanced Research Projects Agency – Energy U.S. Department of Energy


Washington, D.C. December 5, 2012

www.arpa-e.energy.gov

An outcome of this workshop is to identify biotechnologies for methane to liquid fuels

Methane to Liquid Fuels

Representative expertise	
Methanogenesis	Aerobic methanotrophs
Anaerobic & C1 metabolism	Electrosynthesis
Industrial bioprocessing	Synthetic biology & protein engineering

An outcome of this workshop is to identify biotechnologies for methane to liquid fuels

Goals

- •Discuss the feasibility of biological conversion of methane to liquid fuels:
 - Representative technologies
 - Prior experience/lessons learned
 - .Data
 - .TEA
 - Prioritization of technologies
 - Increased understanding
- Community building
- Metrics
 - •What metrics should we use?
 - •What should be their value (roughly)?

Representative discussion questions

- •What is the resource potential for "wet"/"sour" gas?
- •Are there ways around inefficiencies w/ methane conversion?
- •Is it advantageous and possible to divert carbon away from CO₂ towards fuel production in the anaerobic pathway?
- •What synthetic biological routes could/should be considered?
- •What are possible bio-process intensification & integration strategies?

Breakout sessions

- 1st breakout session general brainstorming
 - What are the possible routes to convert CH₁ to liquid fuels?
 - Mechanism for methane activation
 - Intermediates
 - Process inputs
 - Limitations
 - Challenges
 - Benefits
- 2nd breakout session the back-end
 - What processes are needed to economically produce CH₄ to liquid fuels for a given route?
 - Impact of scale and feedstock
 - Process intensification & integration

Workshop agenda, morning

8:30-8:40	Eric Toone, Principal Deputy Director ARPA-E
8:40-9:00	Ramon Gonzalez, Program Director ARPA-E
9:00-9:30	Doug Cameron , Co-President & Director First Green Partners
9:30-10:00	Greg Stephanopoulos , W.H. Dow Professor of Chemical Engineering and Biotechnology MIT
10:00-10:05	Agenda & Breakout Expectations
10:05-10:20	Break & Room Change
10:20-12:15	Breakout Session A (Carver)
	Breakout Session B (Wright)
	Breakout Session C (Edison)
12:15-1:00	Lunch

Workshop agenda, afternoon

1:00-1:30 Breakout session reports

1:30-1:45 Ramon Gonzalez, Impacts & considerations for

bio-opportunities for methane

1:45-2:00 Break & Room Change

2:00-3:45 Breakout Session D (Carver)

Breakout Session E (Wright)

Breakout Session F (Edison)

3:45-4:15 Networking time

4:15-4:45 Breakout session reports

4:45-5:15 Summary & next steps

