Sorry, you need to enable JavaScript to visit this website.

ALPHA

Accelerating Low-Cost Plasma Heating and Assembly

Fusion energy holds the promise of cheap, clean power production, but up to now scientists have been unable to successfully harness fusion as a power source due to complex scientific and technological challenges and the high cost of research. ARPA-E's ALPHA program seeks to create and demonstrate tools to aid in the development of new, lower-cost pathways to fusion power and to enable more rapid progress in fusion research and development.
For a detailed technical overview about this program, please click here.  

California Institute of Technology

Prototype Tools to Establish the Viability of the Adiabatic Heating and Compression Mechanisms Required for Magnetized Target Fusion

California Institute of Technology (Caltech), in coordination with Los Alamos National Laboratory (LANL), will investigate the scaling of adiabatic heating of plasma by propelling magnetized plasma jets into stationary heavy gases and/or metal walls. This is the reverse of the process that would occur in an actual fusion reactor - where a gas or metal liner would compress the plasma - but will provide experimental data to assess the magneto-inertial fusion approach. By using this alternative frame of reference, the researchers will be able to conduct experiments more frequently and at a lower cost because the experimental setup is non-destructive. The team will investigate the jet-target collision using many experiments with a wide range of parameters to determine the actual equation of state relating compression, change in magnetic field, and temperature increase. The experimental work will be supplemented with advanced 3D computer models. If successful, these results will show that compressional heating by a liner is a viable method for increasing temperatures to the levels required for magneto-inertial fusion. The study will also provide critical information on the interactions and limitations for a variety of possible driver and plasma target combinations being developed across the ALPHA program portfolio.

Helion Energy Inc.

Staged Magnetic Compression of FRC Targets to Fusion Conditions

Helion Energy's team will develop a prototype device that will explore a potential low-cost path to fusion for a less expensive, simplified reactor design. In contrast to conventional designs, this prototype will be smaller than a semi-trailer - reducing cost and complexity. The smaller size is achieved by using new techniques to achieve the high temperatures and densities required for fusion. The research team will produce these conditions using field-reversed configuration (FRC) plasmas, a special form of plasma that may offer significant advantages for fusion research. FRC plasmas are movable - they can be produced at one location and then moved into the fusion chamber, which prevents the hot fusion products from damaging the FRC formation hardware. FRC plasmas also have an embedded magnetic field which helps them retain heat. Helion's reactor employs a pulsed heating technique that uses a series of magnetic coils to compress the plasma fuel to very high temperatures and densities. The reactor will also capture and reuse the magnetic energy used to heat and confine the plasma, further increasing efficiency. The smaller size and reduced complexity of the reactor's design will decrease research and development costs and speed up research progress in developing the efficiencies required for fusion power production.

Lawrence Berkeley National Laboratory

Mems Based Ion Beam Drivers for Magnetized Target Fusion

Lawrence Berkeley National Laboratory (LBNL), in coordination with Cornell University, will develop a driver for magneto-inertial fusion based on ion beam technology that can be manufactured with low-cost, scalable methods. Ion beams are commonly used in research laboratories and manufacturing, but currently available technology cannot deliver the required beam intensities at low enough cost to drive an economical fusion reactor. LBNL will take advantage of microelectromechanical (MEMS) technology to develop a design consisting of thousands of mini ion "beamlets" densely packed on silicon wafers - up to thousands of beamlets per 4 to 12 inch wafer. Ions will be accelerated using radio-frequency driven accelerators, resulting in extremely high current densities and high-intensity ion beams that can be focused on plasma targets to achieve fusion. The use of MEMS technology enables low-cost batch fabrication, which could reduce the overall cost of a fusion reactor, in addition to enabling drivers that are modular and scalable. If successful, this project will result in an economical and flexible ion beam driver technology for magneto-inertial fusion reactors.

Los Alamos National Laboratory

Spherically Imploding Plasma Liners as a Standoff Magneto-Inertial-Fusion Driver

Los Alamos National Laboratory (LANL), along with HyperV Technologies and other partners, will design and build a new driver technology that is non-destructive, allowing for more rapid experimentation and progress toward economical fusion power. The team will use a spherical array of plasma guns to produce supersonic jets that merge to create an imploding plasma liner. Because the guns are located several meters away from the fusion burn region (i.e., they constitute a "standoff driver"), the reactor components should not be damaged by repeated experiments. This will allow the team to perform more rapid experimentation, allowing them to better understand the behavior of plasma liners as they implode. If successful, the project will demonstrate the validity of this driver design, optimize the precision and performance of the plasma guns, and obtain experimental data on ram-pressure scaling and liner uniformity critical to progress toward an economical fusion reactor.

Magneto-Inertial Fusion Technologies, Inc.,

Staged Z-Pinch Target For Fusion

Magneto-Inertial Fusion Technologies, Inc. (MIFTI) is developing a new version of the Staged Z-Pinch (SZP) fusion concept that reduces instabilities in the fusion plasma, allowing the plasma to persist for longer periods of time. The Z-Pinch is an approach for simultaneously heating, confining, and compressing plasma by applying an intense, pulsed electrical current which generates a magnetic field. While the simplicity of the Z-Pinch is attractive, it has been plagued by plasma instabilities. MIFTI's SZP plasma target consists of two components with different atomic numbers and is specifically configured to reduce instabilities. When the heavier component collapses around the lighter part, a shock front develops that travels faster than instabilities can grow, allowing the plasma to remain stable, long enough for fusion to occur. The approach also allows researchers to perform experiments in rapid succession, since it does not involve single-use components. MIFTI's design simplifies the engineering required for fusion through its efficiency and reduced number of components.

NumerEx, LLC

Stabilized Liner Compressor (SLC) For Low-Cost Fusion

NumerEx will develop a Stabilized Liner Compressor (SLC) which uses a liquid metal liner for non-destructive experimentation and operation, meaning the liner implosion is quickly repeatable. The SLC uses a rotating chamber, in which liquid metal is formed into a hollow cylinder. The liquid is pushed by pistons driven by high-pressure gas, collapsing the inner surface around a target on the axis. The rotation of the liquid liner avoids instabilities that would otherwise occur during compression of the plasma. After each experiment, the liquid liner can flow back to its original position for subsequent implosion. In the NumerEx team's conceptual design for a power plant, the liquid liner acts as a blanket absorbing radiation from fusion reactions, reducing damage to the reactor hardware and creating fusion fuel for future reactor operation. Additionally, energy from the recoil of the liner and piston can be captured and reused, making the power plant design more efficient.

Sandia National Laboratory

Demonstrating Fuel Magnetization and Laser Heating Tools for Low-Cost Fusion Energy

Sandia National Laboratories will partner with the Laboratory for Laser Energetics at the University of Rochester to investigate the behavior of the magnetized plasma under fusion conditions, using a fusion concept known as Magnetized Liner Inertial Fusion (MagLIF). MagLIF uses lasers to pre-heat a magnetically insulated plasma in a metal liner and then compresses the liner to achieve fusion. The research team will conduct experiments at Sandia's large Z facility as well as Rochester's OMEGA facilities, and will collect key measurements of magnetized plasma fuel including temperature, density, and magnetic field over time. The results will help researchers improve compression and heating performance. By using the smaller OMEGA facility, researchers will be able to conduct experiments more rapidly, speeding the learning process and validating the MagLIF approach. Sandia's team will also use their experimental results to validate and expand a suite of simulation and numerical design tools to improve future fusion energy applications that employ magnetized inertial fusion concepts. This project will help accelerate the development of the MagLIF concept, and assist with the continued development of intermediate density approaches across the ALPHA program.

Swarthmore College

Plasma Accelerator on the Swarthmore Spheromak Experiment

Swarthmore College, along with its partner Bryn Mawr College, will investigate a new kind of plasma fusion target that may offer improved stability at low cost and relatively low energy input. The research team will design and develop new modules that accelerate and evolve plasmas to create elongated structures known as Taylor states, which have helical magnetic field lines resembling a rope. These Taylor state structures exhibit interesting and potentially very beneficial properties upon compression, and could be used as a fusion target if they are able to maintain their temperatures and stability long enough to be compressed to fusion conditions. The new plasma-forming modules will be tested using the team's existing Swarthmore Spheromak Experiment device (SSX), which has an advanced diagnostic suite and the capability to perform 100 experiments per day. This ability will enable rapid progress in understanding the behavior of these plasma plumes and illuminate their potential for use as new targets in the pursuit of fusion reactors.

University of Washington

Development of a Compact Fusion Device Based on the Flow Z-Pinch

The University of Washington (UW), along with its partner Lawrence Livermore National Laboratory, will work to mitigate instabilities in the plasma, and thus provide more time to heat and compress it while minimizing energy loss. The team will use the Z-Pinch approach for simultaneously heating, confining, and compressing plasma by applying an intense, pulsed electrical current which generates a magnetic field. While the simplicity of the Z-Pinch is attractive, it has been plagued by plasma instabilities. UW will investigate Z-pinch fusion using sheared-flow stabilized plasmas, meaning that adjacent layers of the plasma move parallel to each other at different speeds. These sheared axial flows have been shown to stabilize Z-pinch instabilities, and the team will investigate whether this will hold true under more extreme conditions using experimental and computational studies. If successful, UW's design would simplify the engineering required for an eventual reactor through its reduced number of components and efficiency. In addition, the design's avoidance of single-use components would enable fusion research to progress faster through more rapid experimentation.
Subscribe to ALPHA