Sorry, you need to enable JavaScript to visit this website.


Learn more about the work ARPA-E awardee CUNY Energy Institute is doing to create long-lasting, fully rechargeable, grid-scale batteries that could be capable of storing enough electricity to power homes, cars, and cities.

The U.S. military has a vested interest in advancing microgrid technologies that can power forward operating bases. These technologies could not only help the military significantly reduce its energy demand both at home and abroad, but also they could reduce the number of fuel-supply convoys required on the battlefield and the number of troops killed in fuel-supply convoy attacks. This video highlights two ARPA-E projects that have formed strategic partnerships with the military to enable these microgrids at forward operating bases. Georgia Tech is developing an innovative absorption heat pump that utilizes exhaust heat to provide heating and cooling, which could cut the amount of energy used to heat and cool forward operating bases by 50%. Primus Power is developing a low-cost, energy-dense storage system that could store enough energy to operate a base for several days in the event of a disruption.

The story of an ARPA-E awardee doesn’t necessarily end when ARPA-E funding runs out. Two ARPA-E awardees—Eagle Picher Technologies and Baldor Electric Company—have developed technologies to the point where internal stakeholders of their respective companies committed additional funds to help these technologies achieve success in the market. This video features remarks from ARPA-E Technology-to-Market Advisor Kacy Gerst and interviews with technologists at Eagle Picher and Baldor, who each tell the story of how they achieved buy-in from their internal leadership to further develop their ARPA-E-funded technologies.

Urban Electric Power, a startup formed by researchers from the City University of New York (CUNY) Energy Institute, is taking breakthroughs in battery technology from the lab to the market. With industry and government funding, including a grant from ARPA-E, Urban Electric Power developed a zinc-nickel oxide battery electrolyte that circulates constantly, eliminating dendrite formation and preventing battery shortages. Their new challenge is to take this technology to the market, where they can scale up the batteries for reducing peak energy demand in urban areas and storing variable renewable electricity.


Subscribe to GRIDS