Sorry, you need to enable JavaScript to visit this website.


Macroalgae Research Inspiring Novel Energy Resources

The projects that comprise ARPA-E's MARINER (Macroalgae Research Inspiring Novel Energy Resources) program seek to develop the tools to enable the United States to become a global leader in the production of marine biomass. Presently, macroalgae, or seaweed, is primarily used as food for human consumption, but there is a growing opportunity for the production of macroalgae for use as feedstock for fuels and chemicals, as well as animal feed. ARPA-E estimates the United States has suitable conditions and geography to produce at least 500 million dry metric tons of macroalgae per year. Such production volumes could yield about 2.7 quadrillion BTUs (quads) of energy in the form of liquid fuel, roughly 10% of the nation's annual transportation energy demand.MARINER project teams will develop technologies capable of providing economically viable, renewable biomass for energy applications without the need for land, fresh water, and synthetic fertilizers. Such technologies include integrated cultivation and harvesting systems, advanced component technologies, computational modeling tools, aquatic monitoring tools, and advanced breeding and genetic tools. Successful technologies must help greatly reduce the capital and operational expenses related to macroalgae production and enable significant increases in farm size and potential areas of deployment.
For a detailed technical overview about this program, please click here.  

Argonne National Laboratory

Life Cycle Analysis of Off-Shore Macroalgae Production and Logistics for Fuels and Products

C.A. Goudey & Associates

Autonomous Tow Vessels for Offshore Macroalgae Farming

The C.A. Goudey and Associates team will lead a MARINER Category 2 project to develop an autonomous marine tow vessel to enable deployment of large-scale seaweed farming systems. Essentially all marine transportation systems rely on manned vessels. These systems are labor-intensive and depend on boats and ships that are a poor match to the tasks associated with deployment and operations of large-scale seaweed farming systems. This project seeks to remove the costs and requirements of manned systems through the use of slow-moving, autonomous tow vessels. Such vessels will enable macroalgae farming systems over larger ocean areas by eliminating the schedule constraints of a manned vessel, and the misapplication of high-speed boats to towing. Once operational, autonomous vessels could be used for a number of farming tasks such as towing pre-seeded longlines to the farm, transporting harvested seaweed back to collection points, or relocation of critical marine infrastructure. Where manned activities are essential, farm personnel can return to shore while the products of their labor make the same journey at a slower pace and significantly lower costs. If successful, this towing solution can be integrated into complete macroalgae farming systems to reduce high operating costs attributable to fuel and labor.

Catalina Sea Ranch, LLC

Design of Large Scale Macroalgae Systems (MacroSystems)

The Catalina Sea Ranch team will lead a MARINER Category 1 project to design an advanced giant kelp cultivation system for deployment on open ocean sites to assess their ability to produce economical and sustainable biomass for a future biofuels industry. The team plans to develop solutions to the main challenges facing macroalgae cultivation: scalability of seeding, cultivation, and harvest; survivability of the offshore installations; energy use and ecosystem impact; predictability of yield and quality of harvested biomass; and cost effectiveness. The effort will begin by optimizing macroalgae cultivation in the open ocean through site-specific adaption and techno-economic modeling of a proven offshore cultivation system. In collaboration with its commercial partners, the team will then use a direct seeding method, which deposits young plants onto specially designed substrates to save money and time during the hatchery and deployment phase. Additionally, the team's mechanical partial harvest technology, which allows the same plant to be cut multiple times, is expected to further reduce annual seeding costs compared to the state of the art systems.

Fearless Fund

Ocean Energy from Macroalgae

Fearless Fund will lead a MARINER Category 1 project to design and develop a new system to enable large-scale macroalgae "ranching" using remote sensing, imaging, and modeling technologies. The core concept targets monitoring free-floating, low-impact Sargassum seaweed in the Gulf of Mexico for cost-effective biomass harvest. Fearless Fund's cultivation process is designed to mimic naturally occurring seaweed mats found at the surface of the ocean. The concept leverages the free-floating nature of Sargassum, reducing costs from labor, seeding, and harvesting normally associated with seaweed farming. Fearless Fund will investigate the potential to artificially "seed" circular currents found in the Gulf of Mexico with Sargassum cuttings. The team envisions that Sargassum could be ranched within Gulf currents, where it can grow to maturity at a predicted rate. The circular current transports the crop closer to shore at the projected time of harvest, which is calculated based on historical data. Remote sensing technologies will be used to monitor the crop over a three month cultivation season before harvesting the new crop with barges and tug boats after the uninterrupted initial growing period. By improving these methods and leveraging the wealth of data generated from a suite of sensors, the team hopes that industrial-scale farming of macroalgae can be achieved without capital-intensive infrastructure.

Kampachi Farms, LLC

Blue Fields: Offshore Single Point Mooring Array for Efficient, High-Yield Macroalgal Production

The Kampachi Farms team will lead a MARINER Category 1 project to design and develop technologies to deliver deep seawater nutrients to a novel macroalgae production farm concept suitable for deployment in tropical and subtropical deep ocean environments. The superstructure of macroalgae farms typically consists of an anchor grid that tethers the farm in a fixed location and orientation. The Kampachi Farms team aims to disrupt this model by designing a macroalgae array anchored by a single-point mooring, or anchor point. Single-point mooring will allow the farm to align itself with the current, drastically reducing stress loads and improving the efficiency of nutrient dispersal. Additionally, the team has proposed a low-cost upwelling system to deliver nutrients from deeper waters to the macroalgae farm above to solve the issue of low nutrient content surface waters that would slow macroalgae growth. Since the nutrients will always flow downcurrent, and the farm self-aligns itself in that direction, the upwelled nutrients will be more efficiently dispersed across the array. The team believes that these elements, when tested and refined together, can reduce the capital and operating cost of macroalgae cultivation, while increasing the range of deployment into a large swath of the U.S. Exclusive Economic Zone that is currently inhospitable to commercial macroalgae cultivation because of the high costs to moor arrays and the lack of nutrients in surface waters.

Makai Ocean Engineering, Inc.

Modified Environmental Fluid Dynamics Code (EFDC) for MacroAlgae Nutrient Flux Modeling

Makai Ocean Engineering will lead a MARINER Category 3 project to develop tools to simulate the biological and structural performance of offshore macroalgae systems. Macroalgae farming systems will require significant capital and operating costs. Investment and management decisions can be guided by the development of advanced modeling tools to help better understand the nature of macroalgae production for profitable operation. Makai's project will result in a hydrodynamic-mechanical model which simulates forces on offshore algae structures from to waves and currents. Output from the model will be used to size primary components of the offshore systems, and to create cost estimates based on these components. Several scenarios will be modeled for varying wave sizes, water depths, and currents, and thus the results will inform trends in system cost versus oceanographic conditions. These trends will be used to determine the capital cost required per hectare of farm. Additionally, a three-dimensional and time-varying ocean circulation and biological algae model will be developed to simulate the transport, mixing, and consumption of nutrients and resulting algae growth rates. Multiple algae farm configurations will be modeled to gain an understanding of the tradeoffs between system size and nutrient supply requirements. Modeling tools like Makai's system will be critical for designing macroalgae farm components and systems which meet target costs and harvest yields to make them commercial viable and scalable.

Marine BioEnergy, Inc.

Disruptive Supplies of Affordable Biomass Feedstock Grown in the Open Ocean

The team led by Marine BioEnergy will develop an open ocean cultivation system for macroalgae biomass, which can be converted to biocrude. Giant kelp is one of the fastest growing sources of biomass, and the open ocean surface water is an immense, untapped region for growing kelp. However, kelp does not grow in the open ocean because it needs to attach to a hard surface, typically less than 40 meters deep. Kelp also needs nutrients that are only available in deep water or near shore but not on the surface of the open ocean. To overcome these obstacles, the team proposes to build inexpensive underwater drones that will tow large grids, to which the kelp is attached. These autonomous drones will be capable of towing the farms from sunlight-rich surface water during the day to nutrient-rich deep water during the night, and will submerge the farms to avoid storms and passing ships. A prerequisite for this vision will be successful demonstration of depth-cycling kelp plants from the surface to the deep ocean. Working with researchers at the University of Southern California, Wrigley Institute for Environmental Studies, Marine BioEnergy will develop and deploy first-of-kind technology to assess and apply this unique concept of kelp depth-cycling for deep water nutrient uptake to kelp production. Researchers at Pacific Northwest National Laboratory will convert this kelp to biocrude and document the quality. This technology could enable large-scale energy crop production in many regions of the open ocean, with an initial focus on the U.S. Exclusive Economic Zone off California.

Marine Biological Laboratory

The Development of Techniques for Tropical Seaweed Cultivation and Harvesting

The Marine Biological Laboratory (MBL), located at Woods Hole Oceanographic Institution, will lead a MARINER Category 1 project to design and develop a cultivation system for the tropical seaweed Eucheuma isiforme to produce biomass for biofuels. Eucheuma is a commercially valuable species of "red" macroalgae, primarily cultivated in Asia, which has been difficult to propagate in a cost-effective manner. Cultivation of Eucheuma is labor intensive -- making up almost 70% of the production costs -- and is limited to easily accessible areas near shore. The MBL team will design and development a farm system that will mechanize the seeding and harvesting process to drastically reduce labor costs, and allow farms to be deployed in offshore areas to greatly expand large-scale production and increase biomass yield per dollar of capital. The ultimate goal of the project is to cost-effectively produce biomass in underutilized areas of the Gulf of Mexico and tropical U.S. Exclusive Economic Zones where year-round production is possible. MBL will investigate opportunities to deploy an experimental farm in Puerto Rico where a wide range of exposure to prevailing winds and waves creates an ideal testbed to understand the influence of environmental conditions on biological, physiological, and chemical properties of cultivated macroalgae. If successful, the project can disrupt the current practices in the red macroalgae market and reduce reliance on imports from foreign sources, and ultimately scale to production levels relevant for bioenergy production.

Ocean Rainforest, Inc.

Design of Large Scale Macroalgae System (MacroSystem)

Pacific Northwest National Laboratory

Development of Multi-Scale, Multi-Resolution Modeling Tools to Support Scalable Macroalgae Production in the Oceans

The Pacific Northwest National Laboratory (PNNL) will lead a MARINER Category 3 project to develop a set of numerical modeling tools capable of simulating hydrodynamics, mechanical stress, and trajectories of free-floating, unmoored macroalgae production systems. Macroalgae farming systems require significant capital and those investment decisions can be guided by the development of advanced modeling tools to help better understand the nature of macroalgae production. In this project, PNNL will develop modeling tools capable of simulating and predicting macroalgae trajectories for free-floating systems and, supported by biogeochemical modeling processes, macroalgae growth and biomass yields. Importantly, the mechanical stresses on macroalgae from ocean currents and waves will also be simulated. PNNL's set of modeling tools will provide a suite of information essential for the deployment and real-time management of free-floating seaweed production systems in the open ocean. The model will provide new hydrodynamic and nutrient information that will support system design, optimal project siting and risk analysis. Better clarity can also help macroalgae system developers reduce deployment cost, operational risk, and potential impacts on the local marine environment.

Pacific Northwest National Laboratory

Development of the Ocean NOMAD (Nautical Off-shore Macroalgal Autonomous Device) for Low-Cost Production of Biomass for Foods, Feeds, and Fuels

The Pacific Northwest National Laboratory (PNNL) will lead a MARINER Category 1 project to design, build, and field-test a Nautical Off-shore Macroalgal Autonomous Device (NOMAD), which is a free-floating, sensor-equipped, carbon-fiber longline (5 km) to which macroalgae can be attached for cultivation. The PNNL concept eliminates the significant costs associated with mooring, or anchoring, farms at a precise, invariable location in the ocean. Rather, PNNL proposes to release the NOMADs from a seeding vessel far offshore the United States West Coast and use harvesting boats to collect the free-floating systems after a six month, 1500 km southbound journey along nutrient-rich ocean currents. The NOMADs will be equipped with buoys and GPS sensors to track their positions as well as accelerometers and underwater light sensors to estimate, in real time, the biomass yield to optimize harvesting time. The project will employ state-of-the-art hydrodynamic modeling to identify offshore locations for release and harvest that result in optimum biomass yields as the NOMAD travels in nutrient-rich currents. Fully automated, high-speed seeding and harvesting machines will be designed and deployed to minimize labor costs. The team will also use polyculture farming where two species of kelp will be grown to improved light utilization and potentially achieve higher biomass yields than a single species could achieve alone.

Trophic, LLC.

Continuous High Yield Kelp Production

Trophic, together with Otherlab and the University of New Hampshire, will lead a MARINER Category 1 project to design and develop a rugged and resilient offshore seafarm with high yield and low capital cost. The advanced design includes a passive, wave-driven upwelling system that brings nutrient rich seawater to the surface of the ocean, dramatically increasing yields (higher concentrations of nutrients exist in deeper ocean water). A robotic anchoring system will quickly and efficiently deploy environmentally friendly helical anchors into the seafloor with minimal disturbance to the seabed, allowing for high load anchoring capacity with low installation cost. The team has already demonstrated proof of concept for key components and plans to deploy an individual full-scale unit of the larger multi-module system 10 km offshore the coast of New Hampshire, in fully exposed ocean conditions. If successful, the system will produce high yields at a cost of less than $80 per dry metric ton.

University of Alaska Fairbanks

Development of Scalable Coastal and Offshore Macroalgal Farming

The University of Alaska Fairbanks will lead a MARINER Category 1 project to design and develop replicable model farms capable of cost-effective production of sugar kelp, a type of macroalgae suitable for large-scale cultivation is U.S. ocean waters. Much of the cost of kelp farms is related to expensive anchor components, and the laborious process of installing and planting individual longlines between opposing anchors. Another 20% of the cost is ascribed to the harvest process and transport. The team plans innovations to reduce both equipment and operating costs. First, the team will implement a two-point mooring system, anchoring the longline superstructure to only two opposite anchors. Two-point moorings will reduce project costs, and they will allow the superstructure to be more easily lowered to avoid damaging storms or to take advantage of cooler water temperatures or additional nutrients available at lower depths. The reduced complexity of their proposed design also allows the deployment of an entire 1 hectare farm in less than a day. The team seeks to integrate the entire farming process, including seed production, outplanting, grow-out, harvest, and re-seeding. A particular emphasis will be on the development of cost-effective harvesting methods based on technologies applied in the commercial fishing industry. Test deployments for the integrated system are planned for locations in Alaska and New England. Additionally, team members working in Alaska will investigate the potential for "ultra" long-line systems of greater than 1 km in length. These systems may be exceptionally well suited for deployment in the protected waters of the expansive Alaska coastline.

University of California - Irvine

MacroAlgal Cultivation MODeling System (MACMODS)

The University of California, Irvine (UC Irvine) will lead a MARINER Category 3 team to develop a flexible macroalgae cultivation modeling system that integrates an open-source regional ocean model with a fine-scale hydrodynamic model capable of simulating forces and nutrient flows in various farming systems. Macroalgae farming systems will require significant capital. Investment and management decisions can be guided by the development of advanced modeling tools to help better understand the nature of macroalgae production within the context of specific ocean regions. The UC Irvine team expects to provide an improved set of tools for locating optimal macroalgae farm sites, evaluating farm designs for structural soundness under rough ocean conditions, assessing new macroalgae cultivation techniques and operational procedures to maximize productivity. Their model will be capable of resolving turbulent fluxes within a canopy and hydrodynamic stresses on structures at sub-meter resolution. It will also feature a macroalgae growth model that accounts for biological processes such as the enhancement of nutrient uptake due to the motion of the plant canopy and waves. Once completed, the modeling tool will be able to assess optimal sites for macroalgae farms on the U.S. West coast, while guiding operational decisions to maximize yield. The tool will also evaluate the productivity and structural performance of a range of macroalgae farm designs and cultivation techniques, and predict the impact on coastal ecosystems.

University of California, Santa Barbara

Scalable Aquaculture Monitoring System (SAMS)

The University of California, Santa Barbara (UCSB) will lead a MARINER Category 4 project to develop a system-level solution to continuously monitor all stages of seaweed biomass production. To maximize biomass yields and minimize risk, farm managers must be able to monitor farm progress starting at seaweed outplanting and continuing through the growth cycle to harvest. UCSB will develop a Scalable Aquaculture Monitoring System (SAMS) comprised of autonomous and semi-autonomous technologies capable of monitoring biomass productivity and physiological status, as well as the environmental conditions that control its near-term production. UCSB will also develop new software tools to integrate data into real-time, actionable intelligence. SAMS will deliver subsurface biomass imaging and quantification at an individual plant-scale, while maintaining the scalability to monitor multiple giant kelp farms simultaneously. If successful, the integration of canopy and subsurface kelp biomass, productivity, and condition information with environmental data will provide farm managers with a suite of farm data products to monitor farm status from outplant to harvest.

University of New England

A validated finite element modeling tool for hydrodynamic loading and structural analysis of ocean deployed macroalgae farms

The University of New England (UNE) will lead a MARINER Category 3 project to develop a high-resolution, 3D computational modeling tool for simulating hydrodynamic forces on macroalgae cultivation and harvest systems. Advanced modeling tools can help inform decisions about farm structure and the significant capital investment required. UNE's modeling tool will quantify fluid dynamics and mechanical stress at the sub-meter level. The tool will have the capability to evaluate a wide range of offshore macroalgae systems and allow specification of components to withstand storm events, prevent over-engineering, and optimize capital costs. On-shore tank testing and validation at a location in the Gulf of Maine will be used to obtain data necessary to validate the tool's accuracy. The field samples will help quantify the growth as a function of environmental conditions throughout the macroalgae-growing season in the Gulf of Maine. If successful, the completed tool will accelerate the engineering, testing, permitting, and operation of new macroalgae systems.

University of Southern Mississippi

AdjustaDepth - Adjustable Depth Growth System

The University of Southern Mississippi (USM) will lead a MARINER Category 1 project to design and develop a novel, robust seaweed growth system capable of deployment across the U.S. Exclusive Economic Zone. The technology will enable precise positioning of large farm structures to maximize productivity and actively avoid surface hazards such as weather or marine traffic. The seaweed will grow while affixed to support ropes strung between concentric rings. The structure will have automated buoyancy compensation devices to optimize depth minute-by-minute for maximum light intensity and minimum wave impact, as well as automatically lowering during storms or to allow large ships to pass over it. Automated adjustments can include "dives" into deeper, nutrient-rich, zones to access nutrients at depth during the night. If successful, the system will minimize structure cost per dry metric ton and risk by sinking to avoid storm forces, while leaving nothing on the ocean surface to interfere with shipping traffic or other ocean stakeholders. The project team will also investigate autonomous systems capable of returning to its home port for harvesting when not roaming thousands of miles offshore.

University of Southern Mississippi

SeaweedPaddock - Pelagic Sargassum Ranching

The University of Southern Mississippi (USM) will lead a MARINER Category 1 project to design and develop a semi-autonomous enclosure, called a seaweed paddock, to contain and grow mats of free-floating Sargassum, a brown seaweed species native to the eastern Atlantic and the Gulf of Mexico. One of the major cost drivers for production of macroalgae is the expense of the farming equipment, particularly anchors used to hold the farms in place in a particular spot in the ocean. Unlike most kelps, Sargassum does not require anchoring to a fixed structure, but rather will grow as a floating mat at the ocean surface. By leveraging this feature, the USM team will reduce the equipment and cost required to produce this seaweed. The system's Sargassum mats are enclosed by a floating sea fence that can be dynamically positioned by wave powered drones, operated remotely onshore by a single person to ensure maximum exposure to nutrients while avoiding ships and storms. Ocean health is improved in these areas where the collection of mats use excess nutrients in ocean deadzones, reducing ocean acidification while increasing dissolved oxygen levels from photosynthesis. Over the course of a yearlong mission that never returns to shore, the system could grow over a hundred thousand tons starting from a single ton of seaweed.

University of Wisconsin-Milwaukee

Genome Wide Association Studies for Breeding Macrocystis pyrifera

The University of Wisconsin-Milwaukee (UWM) will lead a MARINER Category 5 project to develop a breeding program and enable the development of macroalgae varieties that consistently produce high yields under farmed conditions. Controlled genetic improvements through crop breeding require establishing a bank of genetically homogeneous lines that are examined for markers and traits important for domestication and production. The researchers will sample giant sea kelp from the Southern California Bight, an area of high genetic diversity. The team will assess phenotypic performance of these samples at a real-world farm location at Catalina Island, which has oceanographic conditions that resemble the warm, offshore waters suitable for macroalgae farming. Traits such as survival, growth rate, temperature tolerance and photosynthetic efficiency will be measured at different stages. The team will establish genomic resources for giant kelp, and utilize them in conjunction with the field performance observed to predict the best performing varieties from approximately 50,000 possible crosses. If successful, these germplasm lines will constitute a "seed stock" similar to that established for agricultural crops that can be used by breeders to stage model-based, efficient, cost-effective, and environmentally sound targeted genome-based selection.


Subscribe to MARINER