Sorry, you need to enable JavaScript to visit this website.

OPEN 2009

Kohana Technologies, Inc.

Adaptive Turbine Blades: Blown Wing Technology for Low-Cost Wind Power

Kohana Technologies is developing wind turbines with a control system that delivers compressed air from special slots located in the surface of its blades. The compressed air dynamically adjusts the aerodynamic performance of the blades, and can essentially be used to control lift, drag, and ultimately power. This control system has been shown to exhibit high levels of control in combination with an exceptionally fast response rate. The deployment of such a control system in modern wind turbines would lead to better management of the load on the system during peak usage, allowing larger blades to be deployed with a resulting increase in energy production.

Lehigh University

Electric Field Swing Adsorption for Carbon Capture Applications

Two faculty members at Lehigh University created a new technique called supercapacitive swing adsorption (SSA) that uses electrical charges to encourage materials to capture and release CO2. Current CO2 capture methods include expensive processes that involve changes in temperature or pressure. Lehigh University's approach uses electric fields to improve the ability of inexpensive carbon sorbents to trap CO2. Because this process uses electric fields and not electric current, the overall energy consumption is projected to be much lower than conventional methods. Lehigh University is now optimizing the materials to maximize CO2 capture and minimize the energy needed for the process.

Makani Power, Inc.

Airborne Wind Turbine

Makani Power is developing an Airborne Wind Turbine that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

Massachusetts Institute of Technology

Electroville: High Amperage Energy Storage Device--Energy for the Neighborhood

Led by Massachusetts Institute of Technology (MIT) professor Donald Sadoway, the Electroville project team is creating a community-scale electricity storage device using new materials and a battery design inspired by the aluminum production process known as smelting. A conventional battery includes a liquid electrolyte and a solid separator between its 2 solid electrodes. MIT's battery contains liquid metal electrodes and a molten salt electrolyte. Because metals and salt don't mix, these 3 liquids of different densities naturally separate into layers, eliminating the need for a solid separator. This efficient design significantly reduces packaging materials, which reduces cost and allows more space for storing energy than conventional batteries offer. MIT's battery also uses cheap, earth-abundant, domestically available materials and is more scalable. By using all liquids, the design can also easily be resized according to the changing needs of local communities.

Michigan State University

Wave Disk Engine

Michigan State University (MSU) is developing a new engine for use in hybrid automobiles that could significantly reduce fuel waste and improve engine efficiency. In a traditional internal combustion engine, air and fuel are ignited, creating high-temperature and high-pressure gases that expand rapidly. This expansion of gases forces the engine's pistons to pump and powers the car. MSU's engine has no pistons. It uses the combustion of air and fuel to build up pressure within the engine, generating a shockwave that blasts hot gas exhaust into the blades of the engine's rotors causing them to turn, which generates electricity. MSU's redesigned engine would be the size of a cooking pot and contain fewer moving parts--reducing the weight of the engine by 30%. It would also enable a vehicle that could use 60% of its fuel for propulsion.

Nalco Company

Energy Efficient Capture of CO2 from Coal Flue Gas

Nalco is developing a process to capture carbon in the smokestacks of coal-fired power plants. Conventional CO2 capture methods require the use of a vacuum or heat, which are energy-intensive and expensive processes. Nalco's approach to carbon capture involves controlling the acidity of the capture mixture and using an enzyme to speed up the rate of carbon capture from the exhaust gas. Changing the acidity drives the removal of CO2 from the gas without changing temperature or pressure, and the enzyme speeds up the capture rate of CO2. In addition, Nalco's technology would be simpler to retrofit to existing coal-fired plants than current technologies, so it could be more easily deployed.

NanOasis Technologies, Inc.

Carbon Nanotube Membrane Elements for Energy Efficient and Low Cost Reverse Osmosis

NanOasis Technologies is developing better membranes to filter salt from water during the reverse osmosis desalination process. Conventional reverse osmosis desalination processes pump water through a thin film membrane to separate out the salt. However, these membranes only provide modest water permeability, making the process highly energy intensive and expensive. NanOasis is developing membranes that consist of a thin, dense film with carbon nanotube pores that significantly enhance water transport, while effectively excluding the salt. Water can flow through the tiny pores of these carbon nanotubes quickly and with less pressure, drastically reducing the overall energy use and cost of the desalination process. In addition, NanOasis' technology was purported to not require any modifications to existing desalination plants, so it could be easily deployed.

Ohio State University

Pilot Scale Testing of Carbon-Negative, Product-Flexible Syngas Chemical Looping

The Ohio State University has developed an iron-based material and process for converting syngas--a synthetic gas mixture--into electricity, H2, and/or liquid fuel with zero CO2 emissions. Traditional carbon capture methods use chemical solvents or special membranes to separate CO2 from the gas exhaust from coal-fired power plants. Ohio State's technology uses an iron-based oxygen carrier to generate CO2 and H2 from syngas in separate, pure product streams by means of a circulating bed reactor configuration. The end products of the system are H2, electricity, and/or liquid fuel, all of which are useful sources of power that can come from coal or syngas derived from biomass. Ohio State is developing a high-pressure pilot-scale unit to demonstrate this process at the National Carbon Capture Center.

Pennsylvania State University

Towards Scale Solar Conversion of CO2 and Water Vapor to Hydrocarbon Fuels

Pennsylvania State University (Penn State) is developing a novel sunlight to chemical fuel conversion system. This innovative technology is based on tuning the properties of nanotube arrays with co-catalysts to achieve efficient solar conversion of CO2 and water vapor to methane and other hydrocarbons. The goal of this project is to build a stand-alone collector which can achieve ~2% sunlight to chemical fuel conversion efficiency via CO2 reduction.

Phononic Devices, Inc.

Advanced Semiconductor Materials for Thermoelectric Devices

Phononic Devices is working to recapture waste heat and convert it into usable electric power. To do this, the company is using thermoelectric devices, which are made from advanced semiconductor materials that convert heat into electricity or actively remove heat for refrigeration and cooling purposes. Thermoelectric devices resemble computer chips, and they manage heat by manipulating the direction of electrons at the nanoscale. These devices aren't new, but they are currently too inefficient and expensive for widespread use. Phononic Devices is using a high-performance, cost-effective thermoelectric design that will improve the device's efficiency and enable electronics manufacturers to more easily integrate them into their products.

Porifera, Inc.

Carbon Nanotube Membranes for Energy-Efficient Carbon Sequestration

Porifera is developing carbon nanotube membranes that allow more efficient removal of CO2 from coal plant exhaust. Most of today's carbon capture methods use chemical solvents, but capture methods that use membranes to draw CO2 out of exhaust gas are potentially more efficient and cost effective. Traditionally, membranes are limited by the rate at which they allow gas to flow through them and the amount of CO2 they can attract from the gas. Smooth support pores and the unique structure of Porifera's carbon nanotube membranes allows them to be more permeable than other polymeric membranes, yet still selective enough for CO2 removal. This approach could overcome the barriers facing membrane-based approaches for capturing CO2 from coal plant exhausts.

Research Triangle Institute

Catalytic Biocrude Production in a Novel, Short-Contact Time Reactor

Research Triangle Institute (RTI) is developing a new pyrolysis process to convert second-generation biomass into biofuels in one simple step. Pyrolysis is the decomposition of substances by heating--the same process used to render wood into charcoal, caramelize sugar, and dry roast coffee and beans. RTI's catalytic biomass pyrolysis differs from conventional flash pyrolysis in that its end product contains less oxygen, metals, and nitrogen--all of which contribute to corrosion, instability, and inefficiency in the fuel-production process. This technology is expected to easily integrate into the existing domestic petroleum refining infrastructure, making it an economically attractive option for biofuels production.

Soraa, Inc.

High-Pressure Ammonothermal Process for Bulk Gallium Nitride Crystal Growth for Energy Efficient Commercially Competitive Lighting

Soraa's new GaN crystal growth method is adapted from that used to grow quartz crystals, which are very inexpensive and represent the second-largest market for single crystals for electronic applications (after silicon). More extreme conditions are required to grow GaN crystals and therefore a new type of chemical growth chamber was invented that is suitable for large-scale manufacturing. A new process was developed that grows GaN crystals at a rate that is more than double that of current processes. The new technology will enable GaN substrates with best-in-world quality at lowest-in-world prices, which in turn will enable new generations of white LEDs, lasers for full-color displays, and high-performance power electronics.

Stanford University

Large-Scale Energy Reductions through Sensors, Feedback, and Information Technology

A team of researchers from more than 10 departments at Stanford University is collaborating to transform the way Americans interact with our energy-use data. The team built a web-based platform that collects historical electricity data, which it uses to perform a variety of experiments to learn what triggers people to respond. Experiments include new financial incentives, a calculator to understand the potential savings of efficient appliances, new Facebook interface designs, communication studies using Twitter, and educational programs with the Girl Scouts. Economic modeling is underway to better understand how results from the San Francisco Bay Area can be broadened to other parts of the country.

Sun Catalytix

Affordable Energy from Water and Sunlight

Sun Catalytix is developing wireless energy-storage devices that convert sunlight and water into renewable fuel. Learning from nature, one such device mimics the ability of a tree leaf to convert sunlight into storable energy. It is comprised of a silicon solar cell coated with catalytic materials, which help speed up the energy conversion process. When this cell is placed in a container of water and exposed to sunlight, it splits the water into bubbles of oxygen and hydrogen. The hydrogen and oxygen can later be recombined to create electricity, when the sun goes down for example. The Sun Catalytix device is novel in many ways: it consists primarily of low-cost, earth-abundant materials where other attempts have required more expensive materials like platinum. Its operating conditions also facilitate the use of less costly construction materials, whereas other efforts have required extremely corrosive conditions.

Teledyne Scientific & Imaging, LLC

Optofluidic Solar Concentrators

Teledyne is developing a liquid prism panel that tracks the position of the sun to help efficiently concentrate its light onto a solar cell to produce power. Typically, solar tracking devices have bulky and expensive mechanical moving parts that require a lot of power and are often unreliable. Teledyne's liquid prism panel has no bulky and heavy supporting parts--instead it relies on electrowetting. Electrowetting is a process where an electric field is applied to the liquid to control the angle at which it meets the sunlight above and to control the angle of the sunlight to the focusing lens--the more direct the angle to the focusing lens, the more efficiently the light can be concentrated to solar panels and converted into electricity. This allows the prism to be tuned like a radio to track the sun across the sky and steer sunlight into the solar cell without any moving mechanical parts. This process uses very little power and requires no expensive supporting hardware or moving parts, enabling efficient and quiet rooftop operation for integration into buildings.

United Technologies Research Center

CO2 Capture with Enzyme Synthetic Analogue

United Technologies Research Center (UTRC) is developing a process for capturing the CO2 emitted by coal-fired power plants. Conventional carbon capture methods use high temperatures or chemical solvents to separate CO2 from the exhaust gas, which are energy intensive and expensive processes. UTRC is developing membranes that separate the CO2 out of the exhaust gas using a synthetic version of a naturally occurring enzyme used to manage CO2. This enzyme is used by all air-breathing organisms on Earth to regulate CO2 levels. The enzyme would not survive within the gas exhaust of coal-fired power plants in its natural form, so UTRC is developing a synthetic version designed to withstand these harsh conditions. UTRC's technology does not require heat during processing, which could allow up to a 30% reduction in the cost of carbon capture.

University of California, Los Angeles

Thermal Energy Storage With Supercritical Fluids

The University of California, Los Angeles (UCLA) and NASA's Jet Propulsion Laboratory (JPL) are creating cost-effective storage systems for solar thermal energy using new materials and designs. A major drawback to the widespread use of solar thermal energy is its inability to cost-effectively supply electric power at night. State-of-the-art energy storage for solar thermal power plants uses molten salt to help store thermal energy. Molten salt systems can be expensive and complex, which is not attractive from a long-term investment standpoint. UCLA and JPL are developing a supercritical fluid-based thermal energy storage system, which would be much less expensive than molten-salt-based systems. The team's design also uses a smaller, modular, single-tank design that is more reliable and scalable for large-scale storage applications.

University of Delaware

Quaternary Phosphonium Based Hydroxide Exchange Membranes

The University of Delaware (UD) is developing a new fuel cell membrane for vehicles that relies on cheaper and more abundant materials than those used in current fuel cells. Conventional fuel cells are very acidic, so they require acid-resistant metals like platinum to generate electricity. UD is developing an alkaline fuel cell membrane that can operate in a non-acidic environment where cheaper materials like nickel and silver, instead of platinum, can be used. In addition to enabling the use of cheaper metals, UD's membrane is 500 times less expensive than other polymer membranes used in conventional fuel cells.

University of Delaware

High-Energy Permanent Magnets for Hybrid Vehicles and Alternative Energy

The University of Delaware (UD) is developing permanent magnets that contain less rare earth material and produce twice the energy of the strongest rare earth magnets currently available. UD is creating these magnets by mixing existing permanent magnet materials with those that are more abundant, like iron. Both materials are first prepared in the form of nanoparticles via techniques ranging from wet chemistry to ball milling. After that, the nanoparticles must be assembled in a 3-D array and consolidated at low temperatures to form a magnet. With small size particles and good contact between these two materials, the best qualities of each allow for the development of exceptionally strong composite magnets.


Subscribe to OPEN 2009