Sorry, you need to enable JavaScript to visit this website.

OPEN 2012

Open Funding Solicitation

In 2012, ARPA-E issued its second open funding opportunity designed to catalyze transformational breakthroughs across the entire spectrum of energy technologies. ARPA-E received more than 4,000 concept papers for OPEN 2012, which hundreds of scientists and engineers thoroughly reviewed over the course of several months. In the end, ARPA-E selected 66 projects for its OPEN 2012 program, awarding them a total of $130 million in federal funding. OPEN 2012 projects cut across 11 technology areas: advanced fuels, advanced vehicle design and materials, building efficiency, carbon capture, grid modernization, renewable power, stationary power generation, water, as well as stationary, thermal, and transportation energy storage.

For a detailed technical overview about this program, please click here.  

Alveo Energy

Open Framework Electrode Batteries for Cost-Effective Stationary Storage

Alveo is developing a grid-scale storage battery using Prussian Blue dye as the active material within the battery. Prussian Blue is most commonly known for its application in blueprint documents, but it can also hold electric charge. Though it provides only modest energy density, Prussian Blue is so readily available and inexpensive that it could provide a cost-effective and sustainable storage solution for years to come. Alveo will repurpose this inexpensive dye for a new battery that is far cheaper and less sensitive to temperature, air, and other external factors than comparable systems. This will help to facilitate the adoption and deployment of renewable energy technology. Alveo's Prussian Blue dye-based grid-scale storage batteries would be safe and reliable, have long operational lifetime, and be cheaper to produce than any existing battery technology.

Applied Materials

Kerfless Crystalline-Silicon PV: Gas to Modules

Applied Materials is working with ARPA-E and the Office of Energy Efficiency and Renewable Energy (EERE) to build a reactor that produces the silicon wafers used in solar panels at a dramatically lower cost than existing technologies. Current wafer production processes are time consuming and expensive, requiring the use of high temperatures to produce ingots from molten silicon that can be sliced into wafers for use in solar cells. This slicing process results in significant silicon waste-or "kerf loss"-much like how sawdust is created when sawing wood. With funding from ARPA-E, Applied Materials is developing a reactor where ultra-thin silicon wafers are created by depositing silicon directly from vapor onto specialized reusable surfaces, allowing a significant reduction in the amount of silicon used in the process. Since high purity silicon is one of the most significant costs in producing solar cells, this kerf-less approach could significantly reduce the overall cost of producing solar panels. Applied Materials is partnering with Suniva, who will use funds from EERE to integrate these low-cost wafers into solar cells and modules that generate low-cost electricity, and with Arizona State University, who will develop high-efficiency devices on ultra-thin kerfless substrates. This partnership could enable low-cost, domestic manufacturing of solar modules, allowing the U.S. to reduce the amount of equipment we import from other countries.

Arizona State University

Energy Efficient Electrochemical Capture and Release of Carbon Dioxide

ASU is developing an innovative electrochemical technology for capturing the CO2 released by coal-fired power plants. ASU's technology aims to cut both the energy requirements and cost of CO2 capture technology in half compared to today's best methods. Presently, the only proven commercially viable technology for capturing CO2 from coal plants uses a significant amount of energy, consuming roughly 40% of total power plant output. If installed today, this technology would increase the cost of electricity production by 85%. ASU is advancing a fundamentally new paradigm for CO2 capture using novel electrochemical reactants to separate and capture CO2. This process could be easily scaled and integrated in conventional fossil fuel power generation facilities.

Bio2Electric, LLC

Electrogenerative System for Co-Production of Green Liquid Fuels and Electricity from Methane

Bio2Electric is developing a small-scale reactor that converts natural gas into a feedstock for industrial chemicals or liquid fuels. Conventional, large-scale gas-to-liquid reactors are expensive and not easily scaled down. Bio2Electric's reactor relies on a chemical conversion and fuel cell technology resulting in fuel cells that create a valuable feedstock, as well as electricity. In addition, the reactor relies on innovations in material science by combining materials that have not been used together before, thereby altering the desired output of the fuel cell. The reactors can be efficiently built as modular units, therefore reducing the manufacturing costs of the reactor. Bio2Electric's small-scale reactor could be deployed in remote locations to provide electricity in addition to liquid fuel, increasing the utility of geographically isolated gas reserves.

Brown University

Marine Hydrokinetic Energy Harvesting Using Cyber-Physical Systems

Brown University is developing a power conversion device to maximize power production and reduce costs to capture energy from flowing water in rivers and tidal basins. Conventional methods to harness energy from these water resources face a number of challenges, including the costs associated with developing customized turbine technology to a specific site. Additionally, sites with sufficient energy exist near coastal habitats which depend on the natural water flow to transport nutrients. Brown University's tidal power conversion devices can continuously customize themselves by using an onboard computer and control software to respond to real-time measurements, which will increase tidal power conversion efficiency. Brown University's technology will allow for inexpensive installation and software upgrades and optimized layout of tidal power generators to maximize power generation and mitigate environmental impacts.

California Institute of Technology

Optics for Full Spectrum, Ultrahigh Efficiency Solar Energy Conversion

Caltech is developing a solar module that splits sunlight into individual color bands to improve the efficiency of solar electricity generation. For PV to maintain momentum in the marketplace, the energy conversion efficiency must increase significantly to result in reduced power generation costs. Most conventional PV modules provide 15-20% energy conversion efficiency because their materials respond efficiently to only a narrow band of color in the sun's spectrum, which represents a significant constraint on their efficiency. To increase the light conversion efficiency, Caltech will assemble a solar module that includes several cells containing several different absorbing materials, each tuned to a different color range of the sun's spectrum. Once light is separated into color bands, Caltech's tailored solar cells will match each separated color band to dramatically improve the overall efficiency of solar energy conversion. Caltech's approach to improve the efficiency of PV solar generation should enable improved cost-competitiveness for PV energy.

Case Western Reserve University

High Energy Storage Capacity Low-Cost Iron Flow Battery

Case Western is developing a water-based, all-iron flow battery for grid-scale energy storage at low cost. Flow batteries store chemical energy in external tanks instead of within the battery container. Using iron provides a low-cost, safe solution for energy storage because iron is both abundant and non-toxic. This design could drastically improve the energy storage capacity of stationary batteries at 10-20% of today's cost. Ultimately, this technology could help reduce the cost of stationary energy storage enough to facilitate the adoption and deployment of renewable energy technology.

Ceramatec, Inc.

Natural Gas to Chemicals via Reactive Separation

Ceramatec is developing a small-scale reactor to convert natural gas into benzene-a feedstock for industrial chemicals or liquid fuels. Natural gas as a byproduct is highly abundant, readily available, and inexpensive. Ceramatec's reactor will use a one-step chemical conversion process to convert natural gas into benzene. This one-step process is highly efficient and prevents the build-up of solid residue that can occur when gas is processed. The benzene that is produced can be used as a starting material for nylons, polycarbonates, polystyrene, epoxy resins, and as a component of gasoline.

Ceramatec, Inc.

Intermediate Temperature Proton Conducting Fuel Cells for Transportation Applications

Ceramatec is developing a solid-state fuel cell that operates in an intermediate temperature range that could overcome persistent challenges faced by both high temperature and low temperature fuel cells. The advantages compared to higher temperature fuel cells are less expensive seals and interconnects, as well as longer lifetime. The advantages compared to low temperature fuel cells are reduced platinum requirements and the ability to run on fuels other than hydrogen, such as natural gas or methanol. Ceramatec's design would use a new electrolyte material to transport protons within the cell and advanced electrode layers. The project would engineer a fuel cell stack that performs at lower cost than current automotive designs, and culminate in the building and testing of a short fuel cell stack capable of meeting stringent transportation requirements.

Colorado State University

Synthetic Gene Circuits to Enhance Production of Transgenic Bioenergy Crops

CSU is developing technology to rapidly introduce novel traits into crops that currently cannot be readily engineered. Presently, a limited number of crops can be engineered, and the processes are not standardized - restricting the agricultural sources for engineered biofuel production. More-and more diverse-biofuel crops could substantially improve the efficiency, time scale, and geographic range of biofuel production. CSU's approach would enable simple and efficient engineering of a broad range of bioenergy crops using synthetic biology tools to standardize their genetic modification.

Cornell University

High-Density Photobiorefineries with Optimized Light/CO2 Delivery and Product Extraction

Cornell is developing a new photobioreactor that is more efficient than conventional bioreactors at producing algae-based fuels. Traditional photobioreactors suffer from several limitations, particularly poor light distribution, inefficient fuel extraction, and the consumption of large amounts of water and energy. Cornell's bioreactor is compact, making it more economical to grow engineered algae and collect the fuel the algae produces. Cornell's bioreactor also delivers sunlight efficiently through low-cost, plastic, light-guiding sheets. By distributing optimal amounts of sunlight, Cornell's design would increase efficiency and decrease water use compared to conventional algae reactors.

Dioxide Materials, Inc.

Energy Efficient Electrochemical Conversion of Carbon Dioxide into Useful Products

Dioxide Materials is developing technology to produce carbon monoxide, or "synthesis gas" electrochemically from CO2 emitted by power plants. Synthesis gas can be used as a feedstock for the production of industrial chemicals and liquid fuels. The current state-of-the-art process for capturing and removing CO2 from the flue gas of power plants is expensive and energy intensive, and therefore faces significant hurdles towards widespread implementation. The technologies being developed by Dioxide Materials aim to convert CO2 into something useful in an economical and practical way. The technology has the potential to create an entirely new industry where waste CO2-rather than oil-is used to produce gasoline, diesel fuel, jet fuel, and industrial chemicals.

e Nova, Inc.

Waste Heat-Powered Gas Compressor

eNova is developing a gas compressor powered by waste heat from the exhaust of a gas turbine. A conventional gas turbine facility releases the exhaust heat produced during operation into the air-this heat is a waste by-product that can be used to improve power generation system efficiency. eNova's gas compressor converts the exhaust waste heat from the simple cycle gas turbine to compressed air for injection into the turbine, thereby lessening the burden on the turbine's air compressor. This new compressor design is ideal for use with a remote gas turbine-such as that typically used in the natural gas industry to compress pipeline natural gas-with limited options for waste heat recovery and access to high voltage power lines and water.

Electron Energy Corporation

Solid State Processing of Fully Dense Anisotropic Nanocomposite Magnets

EEC and its team are developing a new processing technology that could transform how permanent magnets found in today's EV motors and renewable power generators are fabricated. This new process, known as friction consolidation extrusion (FC&E), could produce stronger magnets at a lower cost and with reduced rare earth mineral content. The advantage of FC&E over today's best fabrication processes is that it can be applied to unconsolidated powders as opposed to solid alloys, which can allow magnets to be compacted from much smaller grains of two different types, a process which could double its magnetic energy density. EEC's process could reduce the need for rare earth mineral in permanent magnets by as much 30%.

Evolva, Inc.

Renewable Platform for Production of Sesquiterpene Aviation Fuels & Fuel Additives from Renewable Feedstocks

Allylix is producing terpenes-energy dense molecules that can be used as high-performance aviation fuels-from simple sugars using engineered microbes. These terpenes will provide better performance than existing petroleum-based aviation fuels. Allylix will draw upon their industrial-scale terpene manufacturing experience to produce aviation sesquiterpenes at a low cost and large scale. Going forward, Allylix will validate the performance of its aviation fuels in unmanned aerial vehicles (UAVs), and further engineer its process to utilize biomass feedstocks.

Gas Technology Institute

Methane to Methanol Fuel: A Low Temperature Process

GTI is developing a new process to convert natural gas or methane-containing gas into methanol and hydrogen for liquid fuel. Methanol serves as the main feedstock for dimethyl ether, which could be used for vehicular fuel. Unfortunately, current methods to produce liquid fuels from natural gas require large and expensive facilities that use significant amounts of energy. GTI's process uses metal oxide catalysts that are continuously regenerated in a reactor, similar to a battery, to convert the methane into methanol. These metal oxide catalysts reduce the energy required during the conversion process. This process operates at room temperature, is more energy efficient, and less capital-intensive than existing methods.

General Electric

Tensioned Fabric Wind Blades

GE is developing fabric-based wind turbine blades that could significantly reduce the production costs and weight of the blades. Conventional wind turbines use rigid fiberglass blades that are difficult to manufacture and transport. GE will use tensioned fabric uniquely wrapped around a spaceframe blade structure, a truss-like, lightweight rigid structure, replacing current clam shell wind blades design. The blade structure will be entirely altered, allowing for easy access and repair to the fabric while maintaining conventional wind turbine performance. This new design could reduce production costs by 70% and enable automated manufacturing while reducing the processing time by more than 50%. GE's fabric-based blades could be manufactured in sections and assembled on-site, enabling the construction of much larger wind turbines that can capture more wind with significantly lower production and transportation costs.

General Electric

High-Voltage, High-Power Gas Tube Technology for HVDC Transmission

GE is developing a new gas tube switch that could significantly improve and lower the cost of utility-scale power conversion. A switch breaks an electrical circuit by interrupting the current or diverting it from one conductor to another. To date, solid state semiconductor switches have completely replaced gas tube switches in utility-scale power converters because they have provided lower cost, higher efficiency, and greater reliability. GE is using new materials and innovative designs to develop tubes that not only operate well in high-power conversion, but also perform better and cost less than non-tube electrical switches. A single gas tube switch could replace many semiconductor switches, resulting in more cost effective high power converters.

Georgia Tech Research Corporation

Ultra High-Performance Supercapacitor by Using Tailor-Made Molecular Spacer Grafted Graphene

Georgia Tech is developing a supercapacitor using graphene-a two-dimensional sheet of carbon atoms-to substantially store more energy than current technologies. Supercapacitors store energy in a different manner than batteries, which enables them to charge and discharge much more rapidly. The Georgia Tech team approach is to improve the internal structure of graphene sheets with molecular spacers, in order to store more energy at lower cost. The proposed design could increase the energy density of the supercapacitor by 10-15 times over established capacitor technologies, and would serve as a cost-effective and environmentally safe alternative to traditional storage methods.


Subscribe to OPEN 2012