Sorry, you need to enable JavaScript to visit this website.


Single-Pane Highly Insulating Efficient Lucid Designs

The SHIELD Program, short for "Single-Pane Highly Insulating Efficient Lucid Designs," aims to develop innovative materials that will improve the energy efficiency of existing single-pane windows in commercial and residential buildings. Technologies created through the SHIELD program seek to cut in half the amount of heat lost through single-pane windows in cold weather. These materials would improve insulation, reduce cold weather condensation, and enhance occupant comfort. The technologies could also produce secondary benefits, such as improved soundproofing, that will make retrofits more desirable to building occupants and owners. The program will focus on three technical categories: products that can be applied onto existing windowpanes; manufactured windowpanes that can be installed into the existing window sash that holds the windowpane in place; and other early-stage, highly innovative technologies that can enable products in the first two technical categories.
For a detailed technical overview about this program, please click here. 

Argonne National Laboratory

Self-Assembled Nanocellular Composites with Super Thermal Insulation and Soundproof for Single-Pane Windows

Argonne National Laboratory with its partners will develop a transparent nanofoam polymer that can be incorporated into a window film/coating for single-pane windows. The transparent polymer-nanoparticle composite will be applied to glass, and will improve the thermal insulation and the soundproofing of a window. Key to this technology is the generation of small and hollow nanometer-sized particles with thin shells. These will be embedded in a polymer with a carefully controlled structure and uniform dispersal of nanoshells in the polymer matrix. Competing approaches such as those used for silica aerogels have limited ability to fine tune the material's structure, resulting in materials with weaker mechanical strength, difficulties with transparency, and high processing costs. Argonne will develop materials fabricated with self-assembly and a level of precision that allows careful prediction of how light and heat transmit through the material. The team also plans to introduce ultrasound-enhanced continuous processing techniques to manufacture the nanofoam at low cost and with high transparency without undesired haze and enhanced sound isolation capabilities. Argonne predicts that the technology will enable an inexpensive window film that can be installed by the homeowner to upgrade a single-glazed window to double-glazed performance at about 25% of the cost.

Arizona State University

Single-Pane Windows with Insulating Sprayed Particulate Coatings

Arizona State University (ASU) and its partners will develop new windowpanes for single-pane windows to minimize heat losses and improve soundproofing without sacrificing durability or transparency. The team from ASU will produce a thermal barrier composed of silicon dioxide nanoparticles deposited on glass by supersonic aerosol spraying. The layer will minimize heat losses and be transparent at a substantially lower cost than can be done presently with silica aerogels, for example. A second layer deposited using the same method will reflect thermal radiation. The windowpanes will also incorporate layers of dense polymers to control condensation and adhesion, while improving strength. The coating is designed to last more than 20 years and be resistant to damage from scratching, peeling, or freezing of water vapor within the pores of the silica layer.

Aspen Aerogels, Inc.

Aerogel Insulated Pane as a Replacement for Panes in Single Pane Windows

Aspen Aerogels and its partners will develop a cost-effective, silica aerogel-insulated windowpane to retrofit single-pane windows. Silica aerogels are well-known, highly porous materials that are strongly insulating, resisting the flow of heat. The team will advance their silica aerogels to have a combination of high visible light transmittance, low haze, and low thermal conductivity. The team's design consists of an aerogel sheet sandwiched between two glass panes to make a double glazed pane. This silica aerogel-insulated pane will be manufactured using an innovative supercritical drying method to significantly reduce the aerogel drying time, thereby increasing productivity and reducing cost. Aspen Aerogels' windowpane could be used to replace single panes in windows where thickness or weight preclude replacement with common double-pane units and at substantially lower cost.

Eclipse Energy Systems, Inc.

Eclipse Shield

Eclipse Energy Systems will further develop its proprietary transparent electrical conductor material (EclipseTEC) for use in low-emissivity (low-e) window films. Transparent, low-emissivity coatings improve building energy efficiency by reducing heat loss through the windows. Over the course of the project, the team will transfer their present technology for depositing EclipseTEC films to scalable manufacturing processes while preserving the desirable optical and low-e properties. Eclipse will partner with one or more companies offering thermal insulation solutions and incorporate EclipseTEC into their panes and/or applied products. The unique combined system will offer significant energy savings over traditional single-pane windows.

IR Dynamics, LLC

Dynamic IR Window Film to Improve Window Energy Efficiency

IR Dynamics, LLC will develop a low-cost nanomaterial technology to be incorporated into flexible window films that will improve thermal insulation and solar heat gain. The team's nanomaterial will incorporate two materials. First, low-cost nanosheets will increase thermal resistance. Second, a new type of nanomaterial will allow heat, in the form of infrared radiation (IR) from the sun, to pass through the window when it is cold outside, helping to warm the room in cold weather. When it is hot outside, the material will block the solar IR from passing through the window and warming the interior. This same material reflects thermal radiation and displays a tunable emissivity, contributing more to its insulation value and energy retention. The dynamic IR reflectivity and emissivity are passive by nature, requiring no electronics or power source to shift, and only rely on environmental temperature changes. IR Dynamics' technology creates a window film that automatically adjusts depending on outside temperatures and can have a substantive impact in performance on single-pane and older variants of double-pane windows.

NanoSD, Inc.

Retrofittable and Transparent Super-Insulator for Single-Pane Windows

NanoSD, with its partners will develop a transparent, nanostructured thermally insulating film that can be applied to existing single-pane windows to reduce heat loss. To produce the nanostructured film, the team will create hollow ceramic or polymer nanobubbles and consolidate them into a dense lattice structure using heat and compression. Because it is mostly air, the resulting nanobubble structure will exhibit excellent thermal barrier properties. The film can be transparent because the nanostructures are too small to be seen, but achieving this transparency needs processing innovations for assembling the film. The film should also be lightweight, flexible, fire/chemical resistant, soundproof, and condensation resistant. The nanobubble film will be integrated with a low emissivity layer to achieve the final insulating performance. The team will use cost-effective processing and assembly technologies to manufacture its window coating at a cost less than $5 per square foot.

Oak Ridge National Laboratory

Low Cost, Multilayer, Highly Transparent and Thermally Insulating Hybrid Silica-Polymer Film

Oak Ridge National Laboratory (ORNL) and its partners are creating a highly transparent, multilayer window film that can be applied onto single-pane windows to improve thermal insulation, soundproofing, and condensation resistance. The ORNL film combines four layers. Low-cost, nanoporous silica will be used to improve thermal insulation. A layer of a sound-absorbing polymer, which is commonly applied to windows for soundproofing, will be added between the silica sheets to reduce outside noise infiltration. A final outside superhydrophobic coating layer will minimize the condensation. A low-emissivity film will be added to minimize heat transfer out from the conditioned interior.

Palo Alto Research Center

Scalable Transparent Thermal Barriers Fof Single-Pane Window Retrofits

Palo Alto Research Center (PARC) and its partners are developing a low-cost, transparent thermal barrier, consisting of a polymer aerogel, to improve insulation in single-pane windows. The proposed high-performance thermal barrier is anticipated to achieve ultra-low thermal conductivity, while offering mechanical robustness and the visual appearance of clear glass. Additionally, the thermal barrier's synthesis is scalable and thus amenable to high volume manufacturing. The envisioned replacement windowpane is a tri-layer stack consisting of the aerogel, glass, and a low-emissivity coating - an architecture designed to improve the window's energy efficiency, condensation resistance, user comfort, and soundproofing. In this project, PARC will optimize the transparent polymer aerogel synthesis process; Blueshift will scale up fabrication to a 12-inch roll-to-roll pilot process; and Pilkington will evaluate the windowpane performance and durability. At the completion of the project, the aerogel will be integrated in a 12" x 12" windowpane prototype with commercial-off-the-shelf float glass, adhesives, and coatings. The final product will be a windowpane of similar weight and thickness to existing single panes. Based on current raw material and manufacturing costs, PARC foresees that this integrated windowpane can be manufactured at a low cost of $9/ft2.

SRI International

Window Retrofit Applique Using Phonon Engineering (WRAP)

SRI International, in collaboration with its partners will develop a transparent, adhesive film that can be easily applied to single-pane windows to reduce heat loss from warm rooms during cold weather. The team proposes an entirely new approach to thermal barriers and will develop a new class of non-porous materials that use nanoparticles to reflect heat and provide superior thermal insulation. Moreover, the transparent film does not block visible light, meaning that the coating allows light to transmit through the window and brighten the interior. The film could also improve the soundproofing of the window.

Triton Systems, Inc.

New Technology for Single Pane Retrofit

Triton Systems will develop and demonstrate a high efficiency windowpane system that will encourage retrofitting of single-pane windows. Triton's Multifunctional Glazing System (MGS) will potentially provide a better balance of performance with cost and weight versus double-pane insulated glass units. The system combines a nanoparticle-polymer composite film with an insulating layer of a porous material filled with air, to provide thermal insulation. The team will enhance the pane's durability by incorporating a nanocomposite edge seal. The thickness of the MGS will be less than ¼ inch, ensuring its compatibility with most single-pane window sashes as a direct glazing replacement.

University of California, Los Angeles

THermally INsulating TraNsparEnt BarrieR (THINNER) Coatings for Single-Pane Windows

The University of California, Los Angeles (UCLA) will harness advances in nanotechnology to produce thermally insulating transparent barrier (THINNER) coatings to reduce heat losses through single panes of glass. The porous coatings consist of multiple layers of silica/titania films that can simultaneously control the transmission of heat, light and thermal radiation. The internal structure of the coatings is determined by a polymer lattice that is later removed. This leaves a robust porous oxide layer that is transparent and thermally insulating. In addition to reducing heat loss, the coatings will reduce water condensation on the inner window surface and block harmful ultraviolet light. The project will also develop a scalable, high-temperature spray-on process to inexpensively deposit the coating onto glass at the factory.

University of California, San Diego

"Thinner Than Air": Polymer-Based Coatings of Single-Pane Windows

The University of California, San Diego (UCSD) will develop a polymer-based thermal insulating film that can be applied onto windowpanes to reduce heat loss and condensation. The team's approach uses polymer-based coatings with specifically designed structures. Heat management is gained by the thermal conductivity of polymer and the internal thermal barriers. The coating is inherently low-emissivity, and also resists condensation and abrasion. The technology is initially designed for single-pane windows, but can be expanded in the future for use in double-pane windows, doors, and roofs, as well as potential applications in the automobile, aerospace, and military industries.

University of Colorado, Boulder

Advancing Insulation Retrofits from Flexible Inexpensive Lucid Materials (AIR FILMs) for Single-Pane Windiows

The University of Colorado, Boulder (CU-Boulder) with its partners will develop a flexible window film made of nanostructured cellulose. The film can be applied onto single-pane windows to improve their energy efficiency without compromising transparency. The team will be able to economically harvest cellulose needed for the films from food waste using a bacteria-driven process. The cellulose will self-assemble into liquid crystal type structures that selectively reflect infrared light (or heat) while transmitting visible light. The technology is related to liquid crystals that are used in display screens ranging from smart phones to flat-panel HDTVs. The optical properties of these crystals arise from fine-tuning the arrangement of the individual molecules and nanostructures that compose the crystals. Engineering the liquid crystals to be transparent to visible light but able to reflect infrared light will allow heat retention in building spaces, similar to low-emissivity glass.

Virginia Commonwealth University

Fabrication of Inexpensive Aerogel Panes for Window Retrofit

Virginia Commonwealth University (VCU) will develop innovative methods to produce aerogel-on-glass windowpanes for window retrofits. Silica aerogels are porous materials that can be used to control heat transfer across windows. However, widespread use of silica aerogels in windows has been limited by their mechanical fragility, difficulties with transparency, and high manufacturing costs. The team will use newly developed cross-linked aerogels that significantly improve the mechanical strength and durability of aerogels. Aerogels are typically produced through either air drying or supercritical drying. Air drying is inexpensive, but induces stresses that can lead to fragmentation. Supercritical drying is superior, but is expensive. VCU will employ an alternative drying method, freeze drying, in which the material is frozen and ice is sublimated off. VCU estimates that aerogel production using freeze drying can cut production costs by about 40% compared to supercritical drying. VCU's aerogel material would be placed between a glass pane and polycarbonate films to produce an effective windowpane for single-pane window retrofits.
Subscribe to SHIELD