Sorry, you need to enable JavaScript to visit this website.


Solar Agile Delivery of Electrical Power Technology

The projects that make up ARPA-E's Solar ADEPT program, short for "Solar Agile Delivery of Electrical Power Technology," aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.
For a detailed technical overview about this program, please click here.  

Carnegie Mellon University

Nanocomposite Magnet Technology for High Frequency MW Scale Power Converters

Carnegie Mellon University (CMU) is developing a new nanoscale magnetic material that will reduce the size, weight, and cost of utility-scale PV solar power conversion systems that connect directly to the grid. Power converters are required to turn the energy that solar power systems create into useable energy for the grid. The power conversion systems made with CMU's nanoscale magnetic material have the potential to be 150 times lighter and significantly smaller than conventional power conversion systems that produce similar amounts of power.

Cree, Inc.

Agile Direct Grid Connect Medium Voltage 4.7-13.8 kV Power Converter for PV Applications Utilizing Advanced Wide Band Gap Devices

Cree is developing a compact, lightweight power conversion device that is capable of taking utility-scale solar power and outputting it directly into the electric utility grid at distribution voltage levels--eliminating the need for large transformers. Transformers "step up" the voltage of the power that is generated by a solar power system so it can be efficiently transported through transmission lines and eventually "stepped down" to usable voltages before it enters homes and businesses. Power companies step up the voltage because less electricity is lost along transmission lines when the voltage is high and current is low. Cree's new power conversion devices will eliminate these heavy transformers and connect a utility-scale solar power system directly to the grid. Cree's modular devices are designed to ensure reliability--if one device fails it can be bypassed and the system can continue to run.

Ideal Power, Inc.

Dual Bi-directional Silicon IGBTs Modules enables breakthrough PV Inverter using Current-Modulation Topology

PV inverters convert DC power generated by modules into usable AC power. Ideal Power's initial 30kW 94lb PV inverter reduces the weight of comparable 30kW PV inverters by 90%--reducing the cost of materials, manufacturing, shipping, and installation. With ARPA-E support, new bi-directional silicon power switches will be developed, commercialized, and utilized in Ideal Power's next-generation PV inverter. With these components, Ideal Power will produce 100kW inverters that weight less than 100lb., reducing the weight of conventional 3,000lb. 100kW inverters by more than 95%. The new power switches will cut IPC's $/W manufacturing cost in half, as well as further reduce indirect shipping and installation costs.

SiCLAB, Rutgers University, NJ

First in Class Demonstration of a Completely New Type of SiC Bipolar Switch (15kV-20kV) for Utility Scale Inverters

The Rutgers University SiCLAB is developing a new power switch for utility-scale PV inverters that would improve the performance and significantly reduce the size, weight, and energy loss of PV systems. A power switch controls the electrical energy flowing through an inverter, which takes the electrical current from a PV solar panel and converts it into the type and amount of electricity that is compatible with the electric grid. SiCLAB is using silicon carbide (SiC) semiconductors in its new power switches, which are more efficient than the silicon semiconductors used to conduct electricity in most conventional power switches today. Switches with SiC semiconductors can operate at much higher temperatures, as well as higher voltage and power levels than silicon switches. SiC-based power switches are also smaller than those made with silicon alone, so they result in much smaller and lighter electrical devices. In addition to their use in utility-scale PV inverters, SiCLAB's new power switches can also be used in wind turbines, railways, and other smart grid applications.

SolarBridge Technologies, Inc.

Scalable Submodule Power Conversion Methods for Power Density, Efficiency, Performance, and Protection Leaps in Utility-scale Photovoltaics

SolarBridge Technologies is developing a new power conversion technique to improve the energy output of PV power plants. This new technique is specifically aimed at large plants where many solar panels are connected together. SolarBridge is correcting for the inefficiencies that occur when two solar panels that encounter different amounts of sun are connected together. In most conventional PV system, the weakest panel limits the energy production of the entire system. That's because all of the energy collected by the PV system feeds into a single collection point where a central inverter then converts it into useable energy for the grid. SolarBridge has found a more efficient and cost-effective way to convert solar energy, correcting these power differences before they reach the grid.

Transphorm, Inc.

Four quadrant GaN switch enabled three phase grid-tied microinverters

Transphorm is developing power switches for new types of inverters that improve the efficiency and reliability of converting energy from solar panels into useable electricity for the grid. Transistors act as fast switches and control the electrical energy that flows in an electrical circuit. Turning a transistor off opens the circuit and stops the flow of electrical current; turning it on closes the circuit and allows electrical current to flow. In this way a transistor can be used to convert DC from a solar panel into AC for use in a home. Transphorm's transistors will enable a single semiconductor device to switch electrical currents at high-voltage in both directions--making the inverter more compact and reliable. Transphorm is using Gallium Nitride (GaN) as a semiconductor material in its transistors instead of silicon, which is used in most conventional transistors, because GaN transistors have lower losses at higher voltages and switching frequencies.

University of Colorado, Boulder

Wafer-Level Sub-Module Integrated DC/DC Converter

The University of Colorado, Boulder (CU-Boulder) is developing advanced power conversion components that can be integrated into individual solar panels to improve energy yields. The solar energy that is absorbed and collected by a solar panel is converted into useable energy for the grid through an electronic component called an inverter. Many large, conventional solar energy systems use one, central inverter to convert energy. CU-Boulder is integrating smaller, microconverters into individual solar panels to improve the efficiency of energy collection. The university's microconverters rely on electrical components that direct energy at high speeds and ensure that minimal energy is lost during the conversion process--improving the overall efficiency of the power conversion process. CU-Boulder is designing its power conversion devices for use on any type of solar panel.
Subscribe to Solar ADEPT