Sorry, you need to enable JavaScript to visit this website.

ARPA-E Projects

Search ARPA-E Projects by Keyword

Displaying 1 - 872 of 872
Program: 
Project Term: 
03/01/2010 to 06/30/2012
Project Status: 
ALUMNI
Project State: 
Massachusetts
Technical Categories: 

1366 Technologies is developing a process to reduce the cost of solar electricity by up to 50% by 2020--from $0.15 per kilowatt hour to less than $0.07. 1366's process avoids the costly step of slicing a large block of silicon crystal into wafers, which turns half the silicon to dust. Instead, the company is producing thin wafers directly from molten silicon at industry-standard sizes, and with efficiencies that compare favorably with today's state-of-the-art technologies. 1366's wafers could directly replace wafers currently on the market, so there would be no interruptions to the delivery of these products to market. As a result of 1366's technology, the cost of silicon wafers could be reduced by 80%.

Program: 
Project Term: 
09/01/2010 to 02/28/2014
Project Status: 
ALUMNI
Project State: 
Massachusetts
Technical Categories: 
Scientists at 24M Technologies are crossing a Li-Ion battery with a fuel cell to develop a semi-solid flow battery. This system relies on some of the same basic chemistry as a standard Li-Ion battery, but in a flow battery the energy storage material is held in external tanks, so storage capacity is not limited by the size of the battery itself. The design makes it easier to add storage capacity by simply increasing the size of the tanks and adding more paste. In addition, 24M's design also is able to extract more energy from the semi-solid paste than conventional Li-Ion batteries. This creates a cost-effective, energy-dense battery that can improve the driving range of EVs or be used to store energy on the electric grid.
Program: 
Project Term: 
01/03/2017 to 07/02/2020
Project Status: 
ACTIVE
Project State: 
Massachusetts

24M Technologies will lead a team to develop low cost, durable, enhanced separators/solid state electrolytes to build batteries using a lithium metal anode. Using a polymer/solid electrolyte ceramic blend, 24M will be able to make a protective layer that will help eliminate side reactions that have previously contributed to performance degradation and provide a robust mechanical barrier to branchlike metal fibers called dendrites. Unimpeded, dendrites can grow to span the space between the negative and positive electrodes, causing a short-circuit. The resulting, large-area lithium electrode sub-assemblies, or LESAs, will be cost-effective solutions that are scalable to high-volume manufacturing while providing a toolbox to further tailor electrode performance.

Program: 
Project Term: 
08/26/2019 to 08/25/2022
Project Status: 
ACTIVE
Project State: 
Minnesota
Technical Categories: 
3M will develop a film that passively radiates heat away from an engineered surface for use in cooling applications. Using a unique, weather resistant polymer composition, the team will improve the film's ability to reflect sunlight and ultraviolet (UV) light, thus boosting performance while also increasing its lifespan. This film builds upon radiative cooling technology developed in prior ARPA-E awards to Stanford University and SkyCool Systems, a partner in this project. These cooling films are aimed at reducing electricity consumption for air conditioning, refrigeration systems, transportation, and data centers.
Program: 
Project Term: 
01/02/2017 to 01/01/2020
Project Status: 
ALUMNI
Project State: 
Minnesota

3M will develop a new anion exchange membrane (AEM) technology with widespread applications in fuel cells, electrolyzers, and flow batteries. Unlike many proton exchange membrane (PEM) applications, the team's AEM will operate in an alkaline environment, which means lower-cost electrodes can be used. The team plans to engineer a membrane that simultaneously meets key goals for resistance, mechanical and chemical stability, and cost. They will do this by focusing on simple, hydroxide-stable polymers, such as polyethylene, and stable cations, such as tetraalkylammonium and imidazolium groups. Positively-charged cation side chains attached to the polymer backbone will facilitate passage of hydroxide ions through the electrolyte, resulting in enhanced ionic conductivity. The proposed polymer chemistry is envisioned to be low cost and can be used in alkaline environments, and can be processed into mechanically robust membrane composites. This membrane technology has the potential to enable high volume, low-cost production of AEMs. The impact of this project can be transformational as the commercial availability of high-quality AEMs has been a limiting factor in developing AEM-based devices.

Program: 
Project Term: 
02/21/2019 to 02/20/2022
Project Status: 
ACTIVE
Project State: 
North Carolina
Technical Categories: 
ABB Inc. will design a low-cost, secure, and flexible next-generation grid service platform to improve grid efficiency and reliability. This technology will merge advanced edge computing, data fusion and machine learning techniques for virtual metering, and create a central repository for grid applications such as distributed energy resource (DER) control and others on one platform. The united platform will consist of four functional layers: (1) communication including data collection and exchange, (2) data processing and distributed state estimation, (3) data standardization and storage, and (4) hosted grid applications designed to enable large-scale deployment of DERs and more flexible grid control. ABB's approach will integrate and maximize emerging technologies in the transition to a decentralized and distributed electric grid.
Program: 
Project Term: 
10/01/2010 to 06/30/2014
Project Status: 
ALUMNI
Project State: 
North Carolina
Technical Categories: 
ABB is developing an advanced energy storage system using superconducting magnets that could store significantly more energy than today's best magnetic storage technologies at a fraction of the cost. This system could provide enough storage capacity to encourage more widespread use of renewable power like wind and solar. Superconducting magnetic energy storage systems have been in development for almost 3 decades; however, past devices were designed to supply power only for short durations--generally less than a few minutes. ABB's system would deliver the stored energy at very low cost, making it ideal for eventual use in the electricity grid as a cost-effective competitor to batteries and other energy storage technologies. The device could potentially cost even less, on a per kilowatt basis, than traditional lead-acid batteries.
Program: 
Project Term: 
01/11/2012 to 07/31/2014
Project Status: 
ALUMNI
Project State: 
Colorado
Technical Categories: 

Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoa's conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

Program: 
Project Term: 
04/01/2016 to 03/31/2017
Project Status: 
CANCELLED
Project State: 
Michigan
Technical Categories: 

The team led by Accio Energy will develop an ElectroHydroDynamic (EHD) system that harvests energy from the wind through physical separation of charge rather than through rotation of an electric machine. The EHD technology entrains a mist of positively charged water droplets into the wind, which pulls the charge away from the electrically-grounded tower, thereby directly converting wind energy into a mounting voltage. The resulting High-Voltage Direct Current (HVDC) can then be transferred across higher efficiency power lines without the need for a generator, a gearbox, or costly high power AC-DC conversion required by traditional wind energy systems. The simple design of the EHD wind system is highly modular, and can be built with low-cost, mass manufacturing approaches. EHD systems also have minimal moving parts, and can be "containerized" for easy transport and installation at offshore sites. In contrast to the current trend for larger (and relatively expensive) turbines with increased power-per-tower, the EHD approach would utilize low-cost hardware with simple transport and installation, and native HVDC operation to reduce the cost of electricity from offshore wind. EHD technology can also operate at lower wind velocities than traditional turbines, and can thus increase the capacity factor at locations with highly variable winds. If successful, this project will demonstrate EHD technology as an entirely new option for offshore wind that offers a different path to cost effective utilization of a large renewable resource.

Program: 
Project Term: 
04/01/2016 to 07/13/2019
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

The team led by Achates Power will develop an internal combustion engine that combines two promising engine technologies: an opposed-piston (OP) engine configuration and gasoline compression ignition (GCI). Compression ignition OP engines are inherently more efficient than existing spark-ignited 4-stroke engines (potentially up to 50% higher thermal efficiency using gasoline) while providing comparable power and torque, and showing the potential to meet future tailpipe emissions standards. GCI uses gasoline or gasoline-like fuels in a compression ignition engine to deliver thermal efficiency on par with diesel combustion. However, unlike conventional diesel engines, this technology does not require the added expense of high-pressure fuel injection equipment and sophisticated aftertreatment systems. The OP/GCI engine technology is adaptable to a range of engine configurations and can be used in all types of passenger vehicles and light trucks. By successfully combining the highly fuel efficient architecture of the OP engine with the ultra-low emissions GCI technology, the resulting engine could be transformational, significantly reducing U.S. petroleum consumption and carbon dioxide.

Program: 
Project Term: 
01/28/2019 to 07/27/2020
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 
Achates Power will develop an opposed-piston engine suitable for hybrid electric vehicle applications. The team will use a unique gasoline compression ignition design that minimizes energy losses (e.g., heat transfer) typical in conventional internal combustion engines. A motor-generator integrated on each engine crankshaft will provide independent control to each piston and eliminate all torque transmitted across the crankshaft connection, thus reducing engine size, mass, cost, friction, and noise. Engine efficiency improvement is expected through this real-time control of the combustion process. The proposed technology has the potential to offer manufacturers a full-range of cost-effective solutions to improve vehicle efficiency and reduce CO2 emissions.A highly efficient hybrid opposed-piston engine can be easily integrated in the existing fueling infrastructure and offers the power and convenience that U.S. consumers demand.
Program: 
Project Term: 
04/26/2013 to 09/07/2019
Project Status: 
ALUMNI
Project State: 
Massachusetts
Technical Categories: 

Adaptive Surface Technologies is developing a slippery coating that can be used for a number of technology applications including oil and water pipelines, wastewater treatment systems, solar panels (to prevent dust accumulation), refrigeration (to prevent ice buildup), as well as many other energy-relevant applications. Contamination, build-up of microorganisms, and corrosion of untreated surfaces can lead to inefficiencies in the system. Adaptive Surface Technologies' liquid-based coating is tailored to adhere to and then spread out evenly over a rough surface, forming a completely smooth surface that inhibits buildup. Since it is liquid-based, it can easily repair itself if scratched or damaged, resulting in a stable coating with the potential to significantly outperform conventional technologies, such as Teflon, in friction and drag reduction and in repelling a broad range of contaminants.

Program: 
Project Term: 
09/01/2010 to 07/31/2014
Project Status: 
ALUMNI
Project State: 
Ohio
Technical Categories: 
ADMA Products is developing a foil-like membrane for air conditioners that efficiently removes moisture from humid air. ADMA Products' metal foil-like membrane consists of a paper-thin, porous metal sheet coated with a layer of water-loving molecules. This new membrane allows water vapor to permeate across the membrane at high fluxes, at the same time blocking air penetration and resulting in high selectivity. The high selectivity of the membrane translates to less energy use, while the high permeation fluxes result in a more compact device. The new materials and the flat foil-like nature of the membrane facilitate the mass production of a low-cost compact dehumidification device. ADMA received a separate award of up to $466,176 from the Department of the Navy to help decrease military fuel use.
Program: 
Project Term: 
09/13/2017 to 12/12/2020
Project Status: 
ACTIVE
Project State: 
North Carolina
Technical Categories: 

Adroit Materials will develop a gallium nitride (GaN) selective area doping process to enable high-performance, reliable GaN-based, high-power switches which are promising candidates for future high efficiency, high power electronic applications.. Specifically, doping capabilities that allow for the creation of localized doped regions must be developed for GaN in order to reach its full potential as a power electronics semiconductor. Adroit's process will focus on implantation of magnesium ions and an innovative high temperature, high pressure activation anneal, or heat treatment, process to remove implantation damage and control performance-reducing defects. By developing an in-depth understanding of the ion implantation doping process, the team will be able to demonstrate usable and reliable planar and embedded p-n junctions, the principal building block of modern electronic components like transistors.

Advanced Cooling Technologies (ACT)
Program: 
Project Term: 
08/15/2015 to 12/31/2018
Project Status: 
ALUMNI
Project State: 
Pennsylvania
Technical Categories: 
Advanced Cooling Technologies (ACT) will work with Lehigh University, the University of Missouri, and Evapco, Inc. to design and build a novel cool storage system that will increase the efficiency of a plant's dry-cooling system. During the day, the system will transfer waste heat from the plant's heated condenser water via an array of heat pipes to a cool storage unit containing a phase-change material (PCM). The planned PCMs are salt hydrates that can be tailored to store and release large amounts of thermal energy, offering a way to store waste heat until it can be efficiently rejected. When temperatures are lower, such as at night, a novel system of self-agitated fins will be used to promote mixing and enhance heat transfer to air. The effectiveness of the fins will allow a reduction in the size of the storage media and the power required to operate it, both of which could lower costs for the system. Because the PCM materials are salts, their storage temperature can be tuned by changing the water content. Therefore, the storage system can potentially be customized to provide supplemental dry cooling for different climates, including regions with high ambient temperatures, such as the southwestern United States.
Program: 
Project Term: 
10/01/2019 to 12/31/2020
Project Status: 
ACTIVE
Project State: 
Florida
Technical Categories: 
Advanced Magnet Lab (AML) is developing a reliable, contact-free current transfer mechanism from a stationary to a rotating electrode to allow direct current (DC) electrical machines, motors, and generators to achieve unprecedented power and torque density. This technology, a reimagining of the first electric "homopolar" motor invented by Michael Faraday, would provide current transfer without the need for the costly sliding contacts, brushes, and liquids that have limited DC electrical engine efficiency and lifetime. AML's contact-free current transfer would achieve 99% efficiency in DC electrical motors with 5-10 times the power and torque densities available in existing DC technologies.
Program: 
Project Term: 
04/15/2015 to 08/26/2018
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

Aeris Technologies will partner with Rice University and Los Alamos National Laboratory to develop a complete methane leak detection system that allows for highly sensitive, accurate methane detection at natural gas systems. The team will combine its novel compact spectrometer based on a mid-infrared laser, its patent-pending multi-port sampling system, and an advanced computational approach to leak quantification and localization. Their approach will use artificial neural networks and dispersion models to quantify and locate leaks with increased accuracy and reduced computational time for use in a diverse range of meteorological conditions and wellpad configurations. At each wellpad, a control unit will house the core sensor, a computing unit to process data, and wireless capability to transmit leak information to an operator, while the multi-port gas-sampling system will be distributed across the wellpad. Aeris' goal is to be able to detect and measure methane leaks smaller than 1 ton per year from a 10 meter by 10 meter site. At this level of sensitivity, which is in the ppb range, Aeris estimates that its system can facilitate a 90% reduction in fugitive methane emissions. Compared to current monitoring systems that can cost $25,000 annually, Aeris' goal is a cost of $3,000 or less a year to operate.

Program: 
Project Term: 
11/01/2015 to 12/31/2018
Project Status: 
ALUMNI
Project State: 
Massachusetts
Technical Categories: 
Aerodyne Research with partners from Stony Brook University, Precision Combustion, Inc., and C-K Engineering, Inc. will design and build a CHP generator based on a small single-cylinder, two-stroke free-piston internal combustion engine. Similar to an automotive internal combustion engine, the proposed system follows the same process: the combustion of natural gas fuel creates a force that moves a piston, transferring chemical energy to mechanical energy used in conjunction with a linear alternator to create electricity. The free-piston configuration used here, instead of a traditional slider-crank mechanism, has the potential to achieve high electrical conversion efficiency. Their design also includes a double-helix spring that replaces the crankshaft flywheel in conventional engines and can store 5-10 times the work output of the engine cycle and operates at high frequency, which is key to high energy density, compact size, low weight, and low cost. The system will also incorporate low temperature, glow plug-assisted homogeneous charge compression ignition (HCCI) combustion, which reduces heat loss from the engine and further increases efficiency.
Program: 
Project Term: 
01/15/2010 to 03/31/2015
Project Status: 
ALUMNI
Project State: 
Massachusetts
Technical Categories: 

Enzymes are required to break plant biomass down into the fermentable sugars that are used to create biofuel. Currently, costly enzymes must be added to the biofuel production process. Engineering crops to already contain these enzymes will reduce costs and produce biomass that is more easily digested. In fact, enzyme costs alone account for $0.50-$0.75/gallon of the cost of a biomass-derived biofuel like ethanol. Agrivida is genetically engineering plants to contain high concentrations of enzymes that break down cell walls. These enzymes can be "switched on" after harvest so they won't damage the plant while it's growing.

Program: 
Project Term: 
05/01/2016 to 10/30/2019
Project Status: 
ALUMNI
Project State: 
Colorado
Technical Categories: 
Air Squared with partners at Argonne National Laboratory, Purdue University, and Mississippi State University, will develop an advanced internal combustion engine (ICE) integrated with an organic Rankine cycle (ORC) for waste heat recovery. The ICE will use spark-assisted compression ignition (SACI) combustion, a turbulent jet ignition (TJI) fueling system, a high compression ratio, and aggressive exhaust gas recirculation to deliver a higher thermal efficiency with low emissions. Traditional internal combustion engines use the force generated by the combustion of a fuel (e.g. natural gas) to move a piston, transferring chemical energy to mechanical energy. This can then be used in conjunction with a generator to create electricity. SACI is an advanced combustion technique that uses a homogeneous mixture of fuel and air with spark assist to enable higher thermal efficiencies and lower emissions. The TJI combustion system further increases thermal efficiency by enabling reliable SACI combustion even with ultra-lean mixtures (i.e. high air to fuel ratio). The ORC design uses mostly the same components of a traditional Rankine cycle, but uses an ammonia/water mixture instead of steam, combined with a novel oil-free scroll expander.
Program: 
Project Term: 
03/31/2014 to 07/20/2018
Project Status: 
ALUMNI
Project State: 
Pennsylvania
Technical Categories: 

Alcoa is designing a new, electrolytic cell that could significantly improve the efficiency and price point of aluminum production. Conventional cells reject a great deal of waste heat, have difficulty adjusting to electricity price changes, and emit significant levels of CO2. Alcoa is addressing these problems by improving electrode design and integrating a heat exchanger into the wall of the cell. Typically, the positive and negative electrodes--or anode and cathode, respectively--within a smelting cell are horizontal. Alcoa will angle their cathode, increasing the surface area of the cell and shortening the distance between anode and cathode. Further, the cathode will be protected by ceramic plates, which are highly conductive and durable. Together, these changes will increase the output from a particular cell and enable reduced energy usage. Alcoa's design also integrates a molten glass (or salt) heat exchanger to capture and reuse waste heat within the cell walls when needed and reduce global peak energy demand. Alcoa's new cell design could consume less energy, significantly reducing the CO2 emissions and costs associated with current primary aluminum production.

Algaeventure Systems (AVS)
Program: 
Project Term: 
01/15/2010 to 01/31/2012
Project Status: 
ALUMNI
Project State: 
Ohio
Technical Categories: 
Led by CEO Ross Youngs, Algaeventure Systems (AVS) has patented a cost-effective dewatering technology that separates micro-solids (algae) from water. Separating micro-solids from water traditionally requires a centrifuge, which uses significant energy to spin the water mass and force materials of different densities to separate from one another. In a comparative analysis, dewatering 1 ton of algae in a centrifuge costs around $3,400. AVS's Solid-Liquid Separation (SLS) system is less energy-intensive and less expensive, costing $1.92 to process 1 ton of algae. The SLS technology uses capillary dewatering with filter media to gently facilitate water separation, leaving behind dewatered algae which can then be used as a source for biofuels and bio-products. The biomimicry of the SLS technology emulates the way plants absorb and spread water to their capillaries.
Alliant Techsystems (ATK)
Program: 
Project Term: 
07/01/2010 to 06/30/2013
Project Status: 
ALUMNI
Project State: 
Minnesota
Technical Categories: 

Researchers at Alliant Techsystems (ATK) and ACENT Laboratories are developing a device that relies on aerospace wind-tunnel technologies to turn CO2 into a condensed solid for collection and capture. ATK's design incorporates a special nozzle that converges and diverges to expand flue gas, thereby cooling it off and turning the CO2 into solid particles which are removed from the system by a cyclonic separator. This technology is mechanically simple, contains no moving parts and generates no chemical waste, making it inexpensive to construct and operate, readily scalable, and easily integrated into existing facilities. The increase in the cost to coal-fired power plants associated with introduction of this system would be 50% less than current technologies.

Program: 
Project Term: 
09/09/2019 to 09/08/2022
Project Status: 
ACTIVE
Project State: 
Washington
Technical Categories: 
AltaRock Energy will overcome technical limitations to deep geothermal drilling by replacing mechanical methods with a Millimeter Wave (MMW) directed energy technology to melt and vaporize rocks for removal. This approach could increase drilling speed by 10 times or more, reducing costs while reaching higher temperatures and greater depths than those achievable with the best current and proposed mechanical technologies. Project R&D will include benchtop testing as well as larger scale demonstrations of directed MMW drilling at unprecedented borehole lengths and power levels. A detailed modeling and simulations campaign carried out with the experimental work will provide the basis for the design of larger, commercial-scale systems.
Program: 
Project Term: 
02/21/2013 to 03/31/2016
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

Alveo Energy is developing a grid-scale storage battery using Prussian Blue dye as the active material within the battery. Prussian Blue is most commonly known for its application in blueprint documents, but it can also hold electric charge. Though it provides only modest energy density, Prussian Blue is so readily available and inexpensive that it could provide a cost-effective and sustainable storage solution for years to come. Alveo will repurpose this inexpensive dye for a new battery that is far cheaper and less sensitive to temperature, air, and other external factors than comparable systems. This will help to facilitate the adoption and deployment of renewable energy technology. Alveo's Prussian Blue dye-based grid-scale storage batteries would be safe and reliable, have long operational lifetime, and be cheaper to produce than any existing battery technology.

American Manufacturing
Program: 
Project Term: 
12/20/2016 to 09/19/2018
Project Status: 
ALUMNI
Project State: 
Colorado

American Manufacturing, in collaboration with the University of Colorado at Boulder, will develop a flash sintering system to manufacture solid lithium-conducting electrolytes with high ionic conductivity. Conventional sintering is the process of compacting and forming a solid mass by heat and/or pressure without melting it to the point of changing it to a liquid, similar to pressing a snowball together from loose snow. In conventional sintering a friable ceramic "bisque" is heated for several hours at very high temperatures until it becomes dense and strong. Oxide ceramics for solid-state electrolytes have high melting points, and some are chemically stable and do not react with lithium metal, which can reduce cost and maximize energy density. But the sintering process requires several hours at very high temperatures (1100°C). These conditions conflict with the fast movement of lithium atoms in the solid state, which is a key property of the electrolyte. Therefore, the manufacture of these electrolytes by the conventional sintering process is a key barrier to their cost and viability. In contrast, flash sintering can occur in fewer than 5 seconds, at temperatures below 800°C, and can prevent the loss of lithium experienced in conventional sintering. This project is expected to improve lithium battery technology in the following ways: lowering the cost of sintering and processing; enhancing productivity through roll-to-roll manufacturing of co-sintered multilayers ready to be inserted into devices; and hastening the discovery of new materials by shortening the time between synthesis of new chemistries and their electrochemical evaluation to days instead of months.

American Superconductor (AMSC)
Program: 
Project Term: 
05/20/2014 to 07/31/2020
Project Status: 
ACTIVE
Project State: 
Massachusetts
Technical Categories: 

American Superconductor (AMSC) is developing a freezer that does not rely on harmful refrigerants and is more energy efficient than conventional systems. Many freezers are based on vapor compression, in which a liquid refrigerant circulates within the freezer, absorbs heat, and then pumps it out into the external environment. Unfortunately, these systems can be expensive and inefficient. ITC's freezer uses helium gas as its refrigerant, representing a safe, affordable, and environmentally friendly approach to cooling. ITC's improvements to the Stirling cycle system could enable the cost-effective mass production of high-efficiency freezers without the use of polluting refrigerants. ITC received a separate award of up to $1,766,702 from the Department of the Navy to help decrease military fuel use.

Program: 
Project Term: 
11/30/2015 to 10/31/2019
Project Status: 
ALUMNI
Project State: 
Massachusetts
Technical Categories: 

American Superconductor (AMSC) in collaboration with team members Qnergy, Alcoa Howmet, Gas Technology Institute (GTI), MicroCogen Partners, and A.O. Smith Corporation will develop a Free-Piston Stirling engine (FPSE) powered by an ultra-low-emissions natural gas burner for micro-CHP applications. A Stirling engine uses a working gas housed in a sealed environment, in this case the working gas is helium. When heated by the natural gas-fueled burner, the gas expands causing a piston to move and interact with a linear alternator to produce electricity. As the gas cools and contracts, the process resets before repeating again. Advanced Stirling engines endeavor to carefully manage heat inside the system to make the most efficient use of the natural gas energy. The ITC design features free-piston architecture using flexure bearings thus eliminating rubbing parts and allowing for long system life under continuous use. The team will also develop novel materials that enable high-temperature engine operation, further increasing the efficiency of the system.

Ames National Laboratory
Program: 
Project Term: 
01/01/2012 to 05/31/2015
Project Status: 
ALUMNI
Project State: 
Iowa
Technical Categories: 

Ames Laboratory is developing a new class of permanent magnets based on the more commonly available element cerium for use in both EVs and renewable power generators. Cerium is 4 times more abundant and significantly less expensive than the rare earth element neodymium, which is frequently used in today's most powerful magnets. Ames Laboratory will combine other metal elements with cerium to create a new magnet that can remain stable at the high temperatures typically found in electric motors. This new magnetic material will ultimately be demonstrated in a prototype electric motor, representing a cost-effective and efficient alternative to neodymium-based motors.

Program: 
Project Term: 
02/24/2020 to 02/23/2021
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 
Program: 
Project Term: 
01/01/2019 to 12/31/2021
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 

The Antora Energy team will develop key components for a thermal energy storage system (solid state thermal battery) that stores thermal energy in inexpensive carbon blocks. To charge the battery, power from the grid will heat the blocks to temperatures exceeding 2000°C (3632°F) via resistive heating. To discharge energy, the hot blocks are exposed to thermophotovoltaics (TPV) panels that are similar to traditional solar panels but specifically designed to efficiently use the heat radiated by the blocks. The team will develop a thermophotovoltaic heat engine capable of efficiently and durably converting high-temperature heat into electricity. It will seek to double panel efficiency through new materials and smart system design, potentially enabling a cost effective grid storage solution.

Program: 
Project Term: 
06/01/2013 to 09/30/2016
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

Applied Materials is working with ARPA-E and the Office of Energy Efficiency and Renewable Energy (EERE) to build a reactor that produces the silicon wafers used in solar panels at a dramatically lower cost than existing technologies. Current wafer production processes are time consuming and expensive, requiring the use of high temperatures to produce ingots from molten silicon that can be sliced into wafers for use in solar cells. This slicing process results in significant silicon waste--or "kerf loss"--much like how sawdust is created when sawing wood. With funding from ARPA-E, Applied Materials is developing a reactor where ultra-thin silicon wafers are created by depositing silicon directly from vapor onto specialized reusable surfaces, allowing a significant reduction in the amount of silicon used in the process. Since high purity silicon is one of the most significant costs in producing solar cells, this kerf-less approach could significantly reduce the overall cost of producing solar panels. Applied Materials is partnering with Suniva, who will use funds from EERE to integrate these low-cost wafers into solar cells and modules that generate low-cost electricity, and with Arizona State University, who will develop high-efficiency devices on ultra-thin kerfless substrates. This partnership could enable low-cost, domestic manufacturing of solar modules, allowing the U.S. to reduce the amount of equipment we import from other countries.

Program: 
Project Term: 
07/01/2010 to 09/30/2013
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Applied Materials is developing new tools for manufacturing Li-Ion batteries that could dramatically increase their performance. Traditionally, the positive and negative terminals of Li-Ion batteries are mixed with glue-like materials called binders, pressed onto electrodes, and then physically kept apart by winding a polymer mesh material between them called a separator. With the Applied Materials system, many of these manually intensive processes will be replaced by next generation coating technology to apply each component. This process will improve product reliability and performance of the cells at a fraction of the current cost. These novel manufacturing techniques will also increase the energy density of the battery and reduce the size of several of the battery's components to free up more space within the cell for storage.
Applied Research Associates (ARA)
Program: 
Project Term: 
09/01/2015 to 02/28/2019
Project Status: 
ALUMNI
Project State: 
New Mexico
Technical Categories: 

Applied Research Associates (ARA) will design and fabricate a dry-cooling system that overcomes the inherent thermodynamic performance penalty of air-cooled systems, particularly under high ambient temperatures. ARA's ACTIVE cooling technology uses a polymerization thermochemical cycle to provide supplemental cooling and cool storage that can work as a standalone system or be synchronized with air-cooled units to cool power plant condenser water. The cool storage will be completed in two stages. During the day, the cool storage is maintained near the ambient temperature, and then at night the remainder of cooling can be done using the low temperature nighttime air. The cool storage unit is then ready for plant condenser reuse the next day. This technology will provide power plant condensers with return water at the necessary temperature levels to maintain power production at their optimum thermal efficiency.

Program: 
Project Term: 
03/18/2019 to 03/17/2022
Project Status: 
ACTIVE
Project State: 
Rhode Island
Technical Categories: 

Aquanis will develop advanced plasma actuators and controls to reduce aerodynamic loads on wind turbine blades, facilitating the next generation of larger (20+ MW), smarter wind turbines. The technology contains no moving parts, instead using purely electrical plasma actuators on the blade that set the adjacent air in motion when powered. This system can change the lift and drag forces on turbine blades to reduce blade mechanical fatigue and enable the design of larger and cheaper blades. Currently effective at laboratory scales, Aquanis plans to improve the plasma actuator capabilities and field test a prototype plasma actuator system on a wind turbine.

Program: 
Project Term: 
01/01/2012 to 09/30/2015
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Arcadia Biosciences, in collaboration with the University of California-Davis, is developing plants that produce vegetable oil in their leaves and stems. Ordinarily, these oils are produced in seeds, but Arcadia Biosciences is turning parts of the plant that are not usually harvested into a source of concentrated energy. Vegetable oil is a concentrated source of energy that plants naturally produce and is easily separated after harvest. Arcadia Biosciences will isolate traits that control oil production in seeds and transfer them into leaves and stems so that all parts of the plants are oil-rich at harvest time. After demonstrating these traits in a fast-growing model plant, Arcadia Biosciences will incorporate them into a variety of dedicated biofuel crops that can be grown on land not typically suited for food production.
Architectural Applications (A2)
Program: 
Project Term: 
10/15/2010 to 10/14/2011
Project Status: 
ALUMNI
Project State: 
Oregon
Technical Categories: 
Architectural Applications (A2) is developing a building moisture and heat exchange technology that leverages a new material and design to create healthy buildings with lower energy use. Commercial building owners/operators are demanding buildings with greater energy efficiency and healthier indoor environments. A2 is developing a membrane-based heat and moisture exchanger that controls humidity by transferring the water vapor in the incoming fresh air to the drier air leaving the building. Unlike conventional systems, A2 locates the heat and moisture exchanger within the depths of the building's wall to slow down the air flow and increase the surface area that captures humidity, but with less fan power. The system's integration into the wall reduces the size and demand on the air conditioning equipment and increases liable floor area flexibility.
Argonne National Laboratory (ANL)
Program: 
Project Term: 
01/01/2012 to 09/30/2015
Project Status: 
ALUMNI
Project State: 
Illinois
Technical Categories: 

Argonne National Laboratory (ANL) is developing a cost-effective exchange-spring magnet to use in the electric motors of wind generators and EVs that uses no rare earth materials. This ANL exchange-spring magnet combines a hard magnetic outer shell with a soft magnetic inner core--coupling these together increases the performance (energy density and operating temperature). The hard and soft magnet composite particles would be created at the molecular level, followed by consolidation in a magnetic field. This process allows the particles to be oriented to maximize the magnetic properties of low-cost and abundant metals, eliminating the need for expensive imported rare earths. The ultimate goal of this project is to demonstrate this new type of magnet in a prototype electric motor.

Argonne National Laboratory (ANL)
Program: 
Project Term: 
10/01/2014 to 03/31/2017
Project Status: 
ALUMNI
Project State: 
Illinois
Technical Categories: 
ANL is developing a new hybrid fuel cell technology that could generate both electricity and liquid fuels from natural gas. Existing fuel cell technologies typically convert chemical energy from hydrogen into electricity during a chemical reaction with oxygen or some other agent. In addition to generating electricity from hydrogen, ANL's fuel cell would produce ethylene--a liquid fuel precursor--from natural gas. In this design, a methane-coupling catalyst is added to the anode side of a fuel cell that, when fed with natural gas, creates a chemical reaction that produces ethylene and utilizes leftover hydrogen, which is then passed through a proton-conducting membrane to generate electricity. Removing hydrogen from the reaction site leads to increased conversion of natural gas to ethylene.
Argonne National Laboratory (ANL)
Program: 
Project Term: 
01/12/2017 to 01/11/2020
Project Status: 
CANCELLED
Project State: 
Illinois
Technical Categories: 

Argonne National Laboratory (ANL) with its partners will develop a transparent nanofoam polymer that can be incorporated into a window film/coating for single-pane windows. The transparent polymer-nanoparticle composite will be applied to glass, and will improve the thermal insulation and the soundproofing of a window. Key to this technology is the generation of small and hollow nanometer-sized particles with thin shells. These will be embedded in a polymer with a carefully controlled structure and uniform dispersal of nanoshells in the polymer matrix. Competing approaches such as those used for silica aerogels have limited ability to fine tune the material's structure, resulting in materials with weaker mechanical strength, difficulties with transparency, and high processing costs. ANL will develop materials fabricated with self-assembly and a level of precision that allows careful prediction of how light and heat transmit through the material. The team also plans to introduce ultrasound-enhanced continuous processing techniques to manufacture the nanofoam at low cost and with high transparency without undesired haze and enhanced sound isolation capabilities. ANL predicts that the technology will enable an inexpensive window film that can be installed by the homeowner to upgrade a single-glazed window to double-glazed performance at about 25% of the cost.

Arizona State University (ASU)
Program: 
Project Term: 
02/20/2014 to 07/15/2019
Project Status: 
ALUMNI
Project State: 
Arizona
Technical Categories: 
Arizona State University (ASU) will develop a process to produce low-cost, vertical, diamond semiconductor devices for use in high-power electronics. Diamond is an excellent conductor of electricity when boron or phosphorus is added--or doped--into its crystal structures. In fact, diamond can withstand much higher temperatures with higher performance levels than silicon, which is used in the majority of today's semiconductor devices. However, growing uniformly doped diamond crystals is difficult and expensive. ASU's innovative diamond-growing process could create greater doping uniformity, helping to significantly lower the cost of diamond semiconductor devices.
Program: 
Project Term: 
08/07/2019 to 08/06/2022
Project Status: 
ACTIVE
Project State: 
Arizona
Technical Categories: 
Arizona State University will develop learning-ready models and control tools to maintain sensor-rich distribution systems in the presence of high levels of DER and storage. This approach will include topology processing algorithms, load and DER models for system planning and operation, distribution system state estimation, optimal DER operational scheduling algorithms, and system-level DER control strategies that leverage inverter controls' flexibility. The project will alter distribution system operation from today's reactive, load-serving, and outage mitigation-focused approach to an active DER, load, and outage-managed, market-ready approach.
Arizona State University (ASU)
Program: 
Project Term: 
08/13/2019 to 08/12/2022
Project Status: 
ACTIVE
Project State: 
Arizona
Technical Categories: 
ASU will collect CO2 from air using a low-cost polymer membrane-based DAC process. The team will use water evaporation to drive to capture CO2, decrease emissions, and improve the energy efficiency of the overall carbon capture process. The project will use novel materials to create high-surface area membranes to continuously and actively pump CO2 against a concentration gradient. The process will capture distributed CO2 emissions that can be sequestered or converted into a wide range of energy-dense fuels, fuel feedstocks, or fine chemicals.
Arizona State University (ASU)
Program: 
Project Term: 
07/11/2016 to 10/10/2020
Project Status: 
ACTIVE
Project State: 
Arizona
Technical Categories: 

Arizona State University (ASU) will develop a stochastic optimal power flow (SOPF) framework, which would integrate uncertainty from renewable resources, load, distributed storage, and demand response technologies into bulk power system management in a holistic manner. The team will develop SOPF algorithms for the security-constrained economic dispatch (SCED) problem used to manage variability in the electric grid. The algorithms will be implemented in a software tool to provide system operators with real-time guidance to help coordinate between bulk generation and large numbers of DERs and demand response. ASU's project features unique data-analytics based short-term forecast for bulk and distributed wind and solar generation utilized by the advisory tool that generates real-time recommendations for market operators based on the SOPF algorithm outputs.

Arizona State University (ASU)
Program: 
Project Term: 
12/21/2009 to 06/30/2012
Project Status: 
ALUMNI
Project State: 
Arizona
Technical Categories: 

Arizona State University (ASU) is developing a new class of metal-air batteries. Metal-air batteries are promising for future generations of EVs because they use oxygen from the air as one of the battery's main reactants, reducing the weight of the battery and freeing up more space to devote to energy storage than Li-Ion batteries. ASU technology uses Zinc as the active metal in the battery because it is more abundant and affordable than imported lithium. Metal-air batteries have long been considered impractical for EV applications because the water-based electrolytes inside would decompose the battery interior after just a few uses. Overcoming this traditional limitation, ASU's new battery system could be both cheaper and safer than today's Li-Ion batteries, store from 4-5 times more energy, and be recharged over 2,500 times.

Program: 
Project Term: 
05/30/2014 to 08/29/2017
Project Status: 
ALUMNI
Project State: 
Arizona
Technical Categories: 

Arizona State University (ASU) is developing a solar cell that can maintain efficient operation at temperatures above 400°C. Like many other electronics, solar panels work best in cooler environments. As the temperature of traditional solar cells increases beyond 100°C, the energy output decreases markedly and components are more prone to failure. ASU's technology adapts semiconducting materials used in today's light-emitting diode (LED) industry to enable efficient, long-term high-temperature operation. These materials could allow the cells to maintain operation at much higher temperatures than today's solar cells, so they can be integrated as the sunlight-absorbing surface of a thermal receiver in the next generation of hybrid solar collectors. The solar cell would provide electricity using a portion of the incoming sunlight, while the receiver collects usable heat at high temperature that can be stored and dispatched to generate electricity as needed.

Arizona State University (ASU)
Program: 
Project Term: 
09/18/2017 to 12/17/2020
Project Status: 
ACTIVE
Project State: 
Arizona
Technical Categories: 

Arizona State University (ASU) proposes a comprehensive project to advance fundamental knowledge in the selective area doping of GaN using selective regrowth of gallium nitride (GaN) materials. This will lead to the development of high-performance GaN vertical power transistors. The ASU team aims to develop a better mechanistic understanding of these fundamental materials issues, by focusing on three broad areas. First, they will use powerful characterization methods to study fundamental materials properties such as defects, surface states, and investigate possible materials degradation mechanisms. Next, they will develop innovative epitaxial growth and fabrication processes such as Atomic Layer Etching and novel surface passivations, to tackle the materials engineering challenges related to selective area doping for GaN p-n junctions. Finally, they will apply their research to demonstrate randomly placed, reliable, contactable p-n junctions for GaN vertical power devices. If successful, this project will provide a path towards high efficiency, high power, small form factor, and high thermal performance GaN vertical power devices.

Arizona State University (ASU)
Program: 
Project Term: 
11/25/2013 to 12/31/2015
Project Status: 
ALUMNI
Project State: 
Arizona
Technical Categories: 
Arizona State University (ASU) is developing an innovative, formable battery that can be incorporated as a structural element in the vehicle. This battery would replace structural elements such as roof and side panels that previously remained passive, and incapable of storing energy. Unlike today's batteries that require significant packaging and protection, ASU's non-volatile chemistry could better withstand collision on its own because the battery would be more widely distributed throughout the vehicle so less electricity would be stored in any single area. Furthermore, ASU's battery would not use any flammable components or high-voltage modules. The chemistry minimizes conventional protection and controls while enabling it to store energy and provide structure, thus making vehicles lighter and safer.
Arizona State University (ASU)
Program: 
Project Term: 
01/01/2010 to 06/30/2013
Project Status: 
ALUMNI
Project State: 
Arizona
Technical Categories: 

Arizona State University (ASU) is engineering a type of photosynthetic bacteria that efficiently produce fatty acids--a fuel precursor for biofuels. This type of bacteria, called Synechocystis, is already good at converting solar energy and carbon dioxide (CO2) into a type of fatty acid called lauric acid. ASU has modified the organism so it continuously converts sunlight and CO2 into fatty acids--overriding its natural tendency to use solar energy solely for cell growth and maximizing the solar-to-fuel conversion process. ASU's approach is different because most biofuels research focuses on increasing cellular biomass and not on excreting fatty acids. The project has also identified a unique way to convert the harvested lauric acid into a fuel that can be easily blended with existing transportation fuels.

Arizona State University (ASU)
Program: 
Project Term: 
06/01/2014 to 08/31/2017
Project Status: 
ALUMNI
Project State: 
Arizona
Technical Categories: 

Arizona State University (ASU) is developing a hybrid solar energy system that modifies a CSP trough design, replacing the curved mirror with solar cells that collect both direct and diffuse rays of a portion of sunlight while reflecting the rest of the direct sunlight to a thermal absorber to generate heat. Electricity from the solar cells can be used immediately while the heat can be stored for later use. Today's CSP systems offer low overall efficiency because they collect only direct sunlight, or the light that comes in a straight beam from the sun. ASU's technology could increase the amount of light that can be converted to electricity by collecting diffuse sunlight, or light that has been scattered by the atmosphere, clouds, and off the earth. By integrating curved solar cells into a hybrid trough system, ASU will effectively split the solar spectrum and use each portion of the spectrum in the most efficient way possible. Diffuse and some direct sunlight are converted into electricity in the solar cells, while the unused portion of the direct sunlight is reflected for conversion to heat.

Arizona State University (ASU)
Program: 
Project Term: 
03/12/2013 to 02/28/2017
Project Status: 
ALUMNI
Project State: 
Arizona
Technical Categories: 
Arizona State University (ASU) is developing an innovative electrochemical technology for capturing the CO2 released by coal-fired power plants. ASU's technology aims to cut both the energy requirements and cost of CO2 capture technology in half compared to today's best methods. Presently, the only proven commercially viable technology for capturing CO2 from coal plants uses a significant amount of energy, consuming roughly 40% of total power plant output. If installed today, this technology would increase the cost of electricity production by 85%. ASU is advancing a fundamentally new paradigm for CO2 capture using novel electrochemical reactants to separate and capture CO2. This process could be easily scaled and integrated in conventional fossil fuel power generation facilities.
Arizona State University (ASU)
Program: 
Project Term: 
12/13/2016 to 06/11/2020
Project Status: 
ACTIVE
Project State: 
Arizona
Technical Categories: 

Arizona State University (ASU) and its partners will develop new windowpanes for single-pane windows to minimize heat losses and improve soundproofing without sacrificing durability or transparency. The team from ASU will produce a thermal barrier composed of silicon dioxide nanoparticles deposited on glass by supersonic aerosol spraying. The layer will minimize heat losses and be transparent at a substantially lower cost than can be done presently with silica aerogels, for example. A second layer deposited using the same method will reflect thermal radiation. The windowpanes will also incorporate layers of dense polymers to control condensation and adhesion, while improving strength. The coating is designed to last more than 20 years and be resistant to damage from scratching, peeling, or freezing of water vapor within the pores of the silica layer.

Arkansas Power Electronics International (APEI)
Program: 
Project Term: 
09/14/2010 to 03/31/2014
Project Status: 
ALUMNI
Project State: 
Arkansas
Technical Categories: 

Currently, charging the battery of an electric vehicle (EV) is a time-consuming process because chargers can only draw about as much power from the grid as a hair dryer. APEI is developing an EV charger that can draw as much power as a clothes dryer, which would drastically speed up charging time. APEI's charger uses silicon carbide (SiC)-based power transistors. These transistors control the electrical energy flowing through the charger's circuits more effectively and efficiently than traditional transistors made of straight silicon. The SiC-based transistors also require less cooling, enabling APEI to create EV chargers that are 10 times smaller than existing chargers.

Program: 
Project Term: 
01/01/2014 to 09/30/2015
Project Status: 
ALUMNI
Project State: 
Washington
Technical Categories: 
The team from Arzeda will use computational enzyme design tools and their knowledge of biological engineering and chemistry to create new synthetic enzymes to activate methane. Organisms that are capable of using methane as an energy and carbon source are typically difficult to engineer. To address this challenge, Arzeda will develop technologies essential to creating modular enzymes that can be used in other organisms. The team will combine computation enzyme design with experimental methods to improve enzyme activity and help direct methane more effectively into metabolism for fuel production. Arzeda's new enzymes could transform the way methane is activated, and would be more efficient than current chemical and biological approaches.
Program: 
Project Term: 
11/18/2016 to 02/17/2020
Project Status: 
ALUMNI
Project State: 
Massachusetts
Technical Categories: 

Aspen Aerogels and its partners will develop a cost-effective, silica aerogel-insulated windowpane to retrofit single-pane windows. Silica aerogels are well-known, highly porous materials that are strongly insulating, resisting the flow of heat. The team will advance their silica aerogels to have a combination of high visible light transmittance, low haze, and low thermal conductivity. The team's design consists of an aerogel sheet sandwiched between two glass panes to make a double glazed pane. This silica aerogel-insulated pane will be manufactured using an innovative supercritical drying method to significantly reduce the aerogel drying time, thereby increasing productivity and reducing cost. Aspen Aerogels' windowpane could be used to replace single panes in windows where thickness or weight preclude replacement with common double-pane units and at substantially lower cost.

Astronautics Corporation of America
Program: 
Project Term: 
09/01/2010 to 04/30/2014
Project Status: 
ALUMNI
Project State: 
Wisconsin
Technical Categories: 
Astronautics Corporation of America is developing an air conditioning system that relies on magnetic fields. Typical air conditioners use vapor compression to cool air. Vapor compression uses a liquid refrigerant to circulate within the air conditioner, absorb the heat, and pump the heat out into the external environment. Astronautics' design uses a novel property of certain materials, called "magnetocaloric materials", to achieve the same result as liquid refrigerants. These magnetocaloric materials essentially heat up when placed within a magnetic field and cool down when removed, effectively pumping heat out from a cooler to warmer environment. In addition, magnetic refrigeration uses no ozone-depleting gases and is safer to use than conventional air conditioners, which are prone to leaks.
Program: 
Project Term: 
01/11/2012 to 03/31/2014
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

AutoGrid, in conjunction with Lawrence Berkeley National Laboratory and Columbia University, will design and demonstrate automated control software that helps manage real-time demand for energy across the electric grid. Known as the Demand Response Optimization and Management System - Real-Time (DROMS-RT), the software will enable personalized price signals to be sent to millions of customers in extremely short timeframes--incentivizing them to alter their electricity use in response to grid conditions. This will help grid operators better manage unpredictable demand and supply fluctuations in short time-scales--making the power generation process more efficient and cost effective for both suppliers and consumers. DROMS-RT is expected to provide a 90% reduction in the cost of operating demand response and dynamic pricing programs in the U.S.

Program: 
Project Term: 
01/01/2014 to 12/12/2016
Project Status: 
CANCELLED
Project State: 
California
Technical Categories: 
Avogy will develop a vertical transistor with a gallium nitride (GaN) semiconductor that is 30 times smaller than conventional silicon transistors but can conduct significantly more electricity. Avogy's GaN transistor will function effectively in high-power electronics because it can withstand higher electric fields and operate at higher temperatures than comparable silicon transistors. Avogy's vertical device architecture can also enable higher current devices. With such a small and efficient device, Avogy projects it will achieve functional cost parity with conventional silicon transistors within three years, while offering game-changing performance improvements.
Program: 
Project Term: 
08/04/2017 to 02/03/2020
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

Ayar Labs will develop new intra-rack configurations using silicon-based photonic (optical) transceivers, optical devices that transmit and receive information. The team will additionally develop methods to package their photonic transceiver with an electronic processor chip. Marrying these two components will reduce the size and cost of the chip system. Integrated packaging also moves the photonics closer to the chip, which increases energy efficiency by reducing the amount of "hops" between components. If successful, the project will prove that chip packages incorporating both optics and processors, or optics and switches, are possible. This will finally allow optics to penetrate deep into an electrical system and relieve chip interconnect bottlenecks, enabling system architecture improvements to achieve nearly double the energy efficiency with a structure more optimized for future data-use cases such as "big data" analytics and machine learning.

Baldor Electric Company
Program: 
Project Term: 
01/31/2012 to 02/15/2015
Project Status: 
ALUMNI
Project State: 
South Carolina
Technical Categories: 

Baldor Electric Company is developing a new type of traction motor with the potential to efficiently power future generations of EVs. Unlike today's large, bulky EV motors which use expensive, imported rare-earth-based magnets, Baldor's motor could be light, compact, contain no rare earth materials, and have the potential to deliver more torque at a substantially lower cost. Key innovations in this project include the use of a unique motor design, incorporation of an improved cooling system, and the development of advanced materials manufacturing techniques. These innovations could significantly reduce the cost of an electric motor.

Program: 
Project Term: 
02/18/2014 to 06/30/2015
Project Status: 
CANCELLED
Project State: 
New Jersey
Technical Categories: 
BASF is developing metal hydride alloys using new, low-cost metals for use in high-energy nickel-metal hydride (NiMH) batteries. Although NiMH batteries have been used in over 5 million vehicles with a proven record of long service life and abuse tolerance, their storage capacity is limited, which restricts driving range. BASF looks to develop a new NiMH design that will improve storage capacity and reduce fabrication costs through the use of inexpensive components. BASF will select new metals with a high energy storage capacity, then modify and optimize battery cell design. Once the ideal design has been established, BASF will evaluate methods for mass production and build a prototype 1 Kilowatt-hour battery.
Program: 
Project Term: 
11/01/2012 to 09/30/2014
Project Status: 
ALUMNI
Project State: 
Ohio

Battelle Memorial Institute is developing an optical sensor to monitor the internal environment of lithium-ion (Li-Ion) batteries in real-time. Over time, crystalline structures known as dendrites can form within batteries and cause a short circuiting of the battery's electrodes. Because faults can originate in even the tiniest places within a battery, they are hard to detect with traditional sensors. Battelle is exploring a new, transformational method for continuous monitoring of operating Li-Ion batteries. Their optical sensors detect internal faults well before they can lead to battery failures or safety problems. The Battelle team will modify a conventional battery component to scan the cell's interior, watching for internal faults to develop and alerting the battery management system to take corrective action before a hazardous condition occurs.

Program: 
Project Term: 
09/01/2010 to 12/30/2011
Project Status: 
ALUMNI
Project State: 
Ohio
Technical Categories: 
Battelle Memorial Institute is developing a new air conditioning system that uses a cascade reverse osmosis-based absorption cycle. Analyses show that this new cycle can be as much as 60% more efficient than vapor compression, which is used in 90% of air conditioners. Traditional vapor-compression systems use polluting liquids for a cooling effect. Absorption cycles use benign refrigerants such as water, which is absorbed in a salt solution and pumped as liquid--replacing compression of vapor. The refrigerant is subsequently separated from absorbing salt using heat for re-use in the cooling cycle. Battelle is replacing thermal separation of refrigerant with a more efficient reverse osmosis process. Research has shown that the cycle is possible, but further investment will be needed to reduce the number of cascade reverse osmosis stages and therefore cost.
Program: 
Project Term: 
03/06/2012 to 10/31/2015
Project Status: 
CANCELLED
Project State: 
Massachusetts
Technical Categories: 
Beacon Power is developing a flywheel energy storage system that costs substantially less than existing flywheel technologies. Flywheels store the energy created by turning an internal rotor at high speeds--slowing the rotor releases the energy back to the grid when needed. Beacon Power is redesigning the heart of the flywheel, eliminating the cumbersome hub and shaft typically found at its center. The improved design resembles a flying ring that relies on new magnetic bearings to levitate, freeing it to rotate faster and deliver 400% as much energy as today's flywheels. Beacon Power's flywheels can be linked together to provide storage capacity for balancing the approximately 10% of U.S. electricity that comes from renewable sources each year.
Program: 
Project Term: 
12/01/2013 to 09/30/2015
Project Status: 
ALUMNI
Project State: 
New York
Technical Categories: 
Bettergy is developing an inexpensive battery that uses a novel combination of solid, non-flammable materials to hold a greater amount of energy for use in EVs. Conventional EV batteries are typically constructed using costly materials and require heavy, protective components to ensure safety. Consequently, these heavy battery systems require the car to expend more energy, leading to reduced driving range. Bettergy will research a battery design that utilizes low-cost energy storage materials to reduce costs, and solid, non-flammable components that will not leak to improve battery safety. Bettergy plans to do this while reducing the battery weight for greater efficiency so vehicles can drive further on a single charge.
Program: 
Project Term: 
06/09/2017 to 12/08/2020
Project Status: 
ACTIVE
Project State: 
New York
Technical Categories: 
Bettergy will develop a catalytic membrane reactor to allow on-site hydrogen generation from ammonia. Ammonia is much easier to store and transport than hydrogen, but on-site hydrogen generation will not be viable until a number of technical challenges have been met. The team is proposing to develop a system that overcomes the issues caused by the high cracking temperature and the use of expensive catalysts. Bettergy proposes a low temperature, ammonia-cracking membrane reactor system comprised of a non-precious metal ammonia cracking catalyst and a robust composite membrane. A one-step cracking process will be used to convert ammonia into hydrogen and nitrogen, with the hydrogen passing through the selective membrane leaving only nitrogen as the byproduct. If the team is successful, the conversion efficiency will be higher than conventional methods because the hydrogen is removed from the system as it is being produced. The low-temperature reactor will provide greater reliability, ease of operation, and cost effectiveness to hydrogen fueling stations. The team's technology could also be applicable for stationary fuel cell systems and the semiconductor, metallurgy, chemical, aerospace, and telecommunications industries.
Program: 
Project Term: 
03/18/2015 to 06/30/2016
Project Status: 
ALUMNI
Project State: 
New York
Technical Categories: 
Bigwood Systems is developing a comprehensive Optimal Power Flow (OPF) modelling engine that will enhance the energy efficiency, stability, and cost effectiveness of the national electric grid. Like water flowing down a hill, electricity takes the path of least resistance which depends on the grid network topology and on grid controls. However, in a complicated networked environment, this can easily lead to costly congestion or shortages in certain areas of the electric grid. Grid operators use imperfect solutions like approximations, professional judgments, or conservative estimates to try to ensure reliability while minimizing costs. Bigwood Systems' approach will combine four separate analytical technologies to develop an OPF modeling engine that could markedly improve management of the grid. As part of this project, Bigwood Systems will demonstrate the practical applications of this tool in partnership with the California Independent System Operator (CAISO).
Bio Architecture Lab
Program: 
Project Term: 
04/30/2012 to 06/30/2013
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

E. I. du Pont de Nemours & Company (DuPont) and Bio Architecture Lab are exploring the commercial viability of producing fuel-grade isobutanol from macroalgae (seaweed). Making macroalgae an attractive substrate for biofuel applications however, will require continued technology development. Assuming these developments are successful, initial assessments suggest macroalgae aquafarming in our oceans has the potential to produce a feedstock with cost in the same range as terrestrial-based substrates (crop residuals, energy crops) and may be the feedstock of choice in some locations. The use of macroalgae also diversifies the sources of U.S. biomass in order to provide more options in meeting demand for biofuels. The process being developed will use a robust industrial biocatalyst (microorganism) capable of converting macroalgal-derived sugars directly into isobutanol. Biobutanol is an advanced biofuel with significant advantages over ethanol, including higher energy content, lower greenhouse gas emissions, and the ability to be blended in gasoline at higher levels than ethanol without changes to existing automobiles or the fuel industry infrastructure. Butamax is currently commercializing DuPont's biobutanol fermentation technology that uses sugar and starch feedstocks.

Program: 
Project Term: 
02/01/2013 to 12/31/2018
Project Status: 
ALUMNI
Project State: 
New Jersey
Technical Categories: 

Bio2Electric is developing a small-scale reactor that converts natural gas into a feedstock for industrial chemicals or liquid fuels. Conventional, large-scale gas-to-liquid reactors are expensive and not easily scaled down. Bio2Electric's reactor relies on a chemical conversion and fuel cell technology resulting in fuel cells that create a valuable feedstock, as well as electricity. In addition, the reactor relies on innovations in material science by combining materials that have not been used together before, thereby altering the desired output of the fuel cell. The reactors can be efficiently built as modular units, therefore reducing the manufacturing costs of the reactor. Bio2Electric's small-scale reactor could be deployed in remote locations to provide electricity in addition to liquid fuel, increasing the utility of geographically isolated gas reserves.

Program: 
Project Term: 
10/01/2012 to 09/30/2016
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Blackpak will use high-strength, high-surface-area carbon to develop a sorbent-based natural gas storage vessel in which the sorbent itself is the container, eliminating the external pressure vessel altogether. This design could store natural gas at comparable or lower weight and smaller size than conventional compressed gas tanks while reducing the pressure of the natural gas in the vehicle tank. By reducing tank pressure, the system will enable home vehicle refueling at greatly reduced complexity and cost, making these systems accessible to the general public. In addition, the container-less storage system can be easily formed into a range of shapes, allowing automobile designers to seamlessly integrate the natural gas storage into the vehicle design, without sacrificing passenger space.
Program: 
Project Term: 
01/01/2014 to 03/31/2015
Project Status: 
ALUMNI
Project State: 
Massachusetts
Technical Categories: 
BlazeTech is developing advanced sorting software that uses a specialized camera to distinguish multiple grades of light metal scrap by examining how they reflect different wavelengths of light. Existing identification technologies rely on manual sorting of light metals, which can be inaccurate and slow. BlazeTech's sorting technology would identify scrap metal content based on the way that each light metal appears under BlazeTech's sorting camera, automating the sorting process and enabling more comprehensive metal recycling. The software developed under this program will be used to dramatically improve existing metal sorting systems. This technology offers great potential to improve the efficiency of light metals recycling, as similar techniques have proven successful in other industries, including vegetation surveying and plastics identification.
Boston Electrometallurgical Corporation
Program: 
Project Term: 
05/05/2016 to 07/31/2018
Project Status: 
ALUMNI
Project State: 
Massachusetts
Technical Categories: 

Boston Electrometallurgical Corporation will develop and scale a one step molten oxide electrolysis process for producing Ti metal directly from the oxide. Titanium oxide is dissolved in a molten oxide, where it is directly and efficiently extracted as molten titanium metal. In this process, electrolysis is used to separate the product from the solution as a bottom layer that can then be removed from the reactor in its molten state. If successful, it could replace the multistep Kroll process with a one-step process that resembles today's aluminum production techniques. If successful, Ti ingots could be produced at cost parity with stainless steel, opening the doorway to industrial waste heat recovery applications and increasing its adoption in commercial aircraft.

Program: 
Project Term: 
04/19/2013 to 03/31/2016
Project Status: 
ALUMNI
Project State: 
Massachusetts
Technical Categories: 

The Boston University (BU) team is developing control technology to help grid operators more actively manage power flows and integrate renewables by optimally turning entire power lines on and off in coordination with traditional control of generation and load resources. The control technology being developed would provide grid operators with tools to help manage transmission congestion by identifying the facilities whose on/off status must change to lower generation costs, increase utilization of renewable resources and improve system reliability. The technology is based on fast optimization algorithms for the near to real-time change in the on/off status of transmission facilities and their software implementation.

Program: 
Project Term: 
05/01/2018 to 04/30/2021
Project Status: 
ACTIVE
Project State: 
Massachusetts
Technical Categories: 

Boston University (BU) will develop an occupancy sensing system to estimate the number of people in commercial spaces and monitor how this number changes over time. Their Computational Occupancy Sensing SYstem (COSSY) will be designed to deliver robust performance by combining data from off-the-shelf sensors and cameras. Data streams will be interpreted by advanced detection algorithms to provide an occupancy estimate. All processing will be performed locally to mitigate security concerns. The system will be designed to accommodate various room sizes and geometries. Occupancy data will be sent to the building control system to manage the heating, cooling, and air flow in order to maximize building energy efficiency and provide optimal human comfort. Energy costs of heating and cooling can be reduced by up to 30% by training the building management system to deliver the right temperature air when and where it is needed. The system's use of components readily available in the market today promises low cost and fast commercialization.

Program: 
Project Term: 
01/28/2019 to 08/27/2021
Project Status: 
ACTIVE
Project State: 
New Hampshire
Technical Categories: 

The Brayton Energy team will develop a key component to enable a cost-competitive Laughlin-Brayton battery energy storage system that combines thermal storage and innovative turbomachinery to generate power. When the system is charging, an electrically driven heat pump will accumulate thermal energy in a high temperature thermal energy storage medium. During discharge, electricity is produced by heating a gas using the stored thermal energy and sending it through the generation turbine that drives an electric generator. Brayton Energy's innovation lies in its reversing, counter-rotating turbine design, in which each turbomachinery stage is designed to act as both as a compressor and turbine, alternating between charging and discharging cycles. This approach greatly simplifies the Laughlin-Brayton battery system, improves its efficiency and operability, and reduces the capital cost.

Program: 
Project Term: 
11/09/2015 to 11/08/2018
Project Status: 
ALUMNI
Project State: 
New Hampshire
Technical Categories: 
Brayton Energy will develop a 1 kW recuperated Brayton cycle engine to produce heat and electricity for residential use. To begin the cycle, compressed air is preheated in a recuperator before adding fuel, then the air-fuel mix is ignited in a combustion chamber. The high temperature exhaust gases then expand through the turbine, providing some of the work that drives the compressor and also produces electricity in a generator. Major project innovations include the use of a rotary screw-type compressor and expander that operate in a sub-atmospheric Brayton cycle i.e. below atmospheric pressure. In addition, Brayton will also use their innovative patented recuperator that is currently in production, and an ultra-low emission combustor.
Program: 
Project Term: 
03/25/2019 to 09/24/2020
Project Status: 
ACTIVE
Project State: 
New Hampshire
Technical Categories: 
Brayton Energy is developing an efficient and low-cost distributed residential-scale combined heat and power system. This project seeks to advance and combine several complementary technologies--including metallic screw compressors, high temperature ceramic screw expanders, and a high-effectiveness recuperator. This combination will result in an integrated system with performance surpassing existing state-of-the-art systems. Brayton Energy's proposed technology would continuously deliver 2 kW of electrical power and enable efficient and economical distributed power systems that would radically transform how we heat and cool our homes.
Program: 
Project Term: 
06/15/2015 to 07/14/2019
Project Status: 
ALUMNI
Project State: 
Montana
Technical Categories: 

Bridger Photonics plans to build a mobile methane sensing system capable of surveying a 10 meter by 10 meter well platform in just over five minutes with precision that exceeds existing technologies used for large-scale monitoring. Bridger's complete light-detection and ranging (LiDAR) remote sensing system will use a novel, near-infrared fiber laser amplifier in a system mounted on a ground vehicle or an unmanned aerial vehicle (UAV), which can be programmed to survey multiple wellpads a day. Data captured by the LiDAR system will provide 3-D topographic and methane absorption imagery using integrated inertial navigation and global positioning system data to show precisely where a methane leak may be occurring and at what rate. This approach will also be used to identify objects on the wellsite to better inform the search optimization. Bridger's goal is for its devices to be able to service up to 85 sites, and thus cost $1,400 to $2,220 a year to operate per wellsite. By advancing an affordable methane detection system that can both pinpoint and assess leakage quickly, Bridger's system could help companies repair methane leaks and catalyze an overall reduction in methane emissions from natural gas development.

Program: 
Project Term: 
01/01/2012 to 03/31/2016
Project Status: 
ALUMNI
Project State: 
New York
Technical Categories: 

Brookhaven National Laboratory is developing a low-cost superconducting wire that could be used in high-power wind generators. Superconducting wire currently transports 600 times more electric current than a similarly sized copper wire, but is significantly more expensive. Brookhaven National Laboratory will develop a high-performance superconducting wire that can handle significantly more electrical current, and will demonstrate an advanced manufacturing process that has the potential to yield a several-fold reduction in wire costs while using a using negligible amount of rare earth material. This design has the potential to make a wind turbine generator lighter, more powerful, and more efficient, particularly for offshore applications.

Program: 
Project Term: 
03/20/2013 to 05/31/2017
Project Status: 
ALUMNI
Project State: 
Rhode Island
Technical Categories: 

Brown University is developing a power conversion device to maximize power production and reduce costs to capture energy from flowing water in rivers and tidal basins. Conventional methods to harness energy from these water resources face a number of challenges, including the costs associated with developing customized turbine technology to a specific site. Additionally, sites with sufficient energy exist near coastal habitats which depend on the natural water flow to transport nutrients. Brown University's tidal power conversion devices can continuously customize themselves by using an onboard computer and control software to respond to real-time measurements, which will increase tidal power conversion efficiency. Brown University's technology will allow for inexpensive installation and software upgrades and optimized layout of tidal power generators to maximize power generation and mitigate environmental impacts.

C.A. Goudey & Associates
Program: 
Project Term: 
04/06/2018 to 04/05/2021
Project Status: 
ACTIVE
Project State: 
Massachusetts
Technical Categories: 

The C.A. Goudey and Associates team will lead a MARINER Category 2 project to develop an autonomous marine tow vessel to enable deployment of large-scale seaweed farming systems. Essentially all marine transportation systems rely on manned vessels. These systems are labor-intensive and depend on boats and ships that are a poor match to the tasks associated with deployment and operations of large-scale seaweed farming systems. This project seeks to remove the costs and requirements of manned systems through the use of slow-moving, autonomous tow vessels. Such vessels will enable macroalgae farming systems over larger ocean areas by eliminating the schedule constraints of a manned vessel, and the misapplication of high-speed boats to towing. Once operational, autonomous vessels could be used for a number of farming tasks such as towing pre-seeded longlines to the farm, transporting harvested seaweed back to collection points, or relocation of critical marine infrastructure. Where manned activities are essential, farm personnel can return to shore while the products of their labor make the same journey at a slower pace and significantly lower costs. If successful, this towing solution can be integrated into complete macroalgae farming systems to reduce high operating costs attributable to fuel and labor.

Program: 
Project Term: 
02/10/2014 to 12/01/2017
Project Status: 
ALUMNI
Project State: 
Connecticut
Technical Categories: 

Cadenza Innovation is developing an innovative system to join and package batteries using a wide range of battery chemistries. Today's battery packs require heavy and bulky packaging that limits where they can be positioned within a vehicle. By contrast, Cadenza's design enables flexible placement of battery packs to absorb and manage impact energy in the event of a collision. Cadenza's battery will use a novel configuration that allows for double the energy density through the use of a multifunctional pack design.

California Institute of Technology (Caltech)
Program: 
Project Term: 
08/25/2017 to 08/24/2018
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

The team at the California Institute of Technology (Caltech) has developed a method to determine the mechanical properties of lithium as a function of size, temperature, and microstructure. The body of scientific knowledge on these properties and the way dendrites form and grow is very limited, in part due to the reactivity of metallic lithium with components of air such as water and carbon dioxide. The team proposes to conduct a targeted investigation on the properties of electrodeposited lithium metal in commercial thin-film solid-state batteries. As part of the effort, the team will perform structural and mechanical testing on electrodeposited lithium, at dendrite-relevant dimensions. Their investigation will provide new information on the microstructure, strength, and stiffness of electrodeposited lithium. Finally, they will conduct cycling experiments on the commercial cells to observe lithium transport and dendrite nucleation and growth. If successful, the project will result in new knowledge about the microstructure and properties of lithium, and may further our understanding of dendrite nucleation and growth mechanisms - a starting point to developing higher energy battery technologies.

California Institute of Technology (Caltech)
Program: 
Project Term: 
10/01/2015 to 12/31/2018
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

Caltech, in coordination with Los Alamos National Laboratory (LANL), will investigate the scaling of adiabatic heating of plasma by propelling magnetized plasma jets into stationary heavy gases and/or metal walls. This is the reverse of the process that would occur in an actual fusion reactor - where a gas or metal liner would compress the plasma - but will provide experimental data to assess the magneto-inertial fusion approach. By using this alternative frame of reference, the researchers will be able to conduct experiments more frequently and at a lower cost because the experimental setup is non-destructive. The team will investigate the jet-target collision using many experiments with a wide range of parameters to determine the actual equation of state relating compression, change in magnetic field, and temperature increase. The experimental work will be supplemented with advanced 3D computer models. If successful, these results will show that compressional heating by a liner is a viable method for increasing temperatures to the levels required for magneto-inertial fusion. The study will also provide critical information on the interactions and limitations for a variety of possible driver and plasma target combinations being developed across the ALPHA program portfolio.

California Institute of Technology (Caltech)
Program: 
Project Term: 
02/11/2016 to 08/10/2019
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Researchers at the California Institute of Technology (Caltech) and their partners will design and fabricate a new CPV module with features that can capture both direct and diffuse sunlight. The team's approach uses a luminescent solar concentrator (LSC) sheet that includes quantum dots to capture and re-emit sunlight, micro-PV cells matched to the color of the light from the quantum dots, and a coating of advanced materials that enhance concentration and delivery of sunlight to the micro-PV cells. In addition, the light not captured by the quantum dots will impinge on a tandem solar cell beneath the LSC sheet. The design of the LSC will focus on lowering the number of expensive micro-PV cells needed within the concentrator sheet, which will reduce system costs, but still maintain high efficiency. The design will also allow the module to be effective without any tracking system, making it potentially attractive for all PV markets, including space-constrained rooftops.
California Institute of Technology (Caltech)
Program: 
Project Term: 
03/28/2013 to 09/27/2016
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
The California Institute of Technology (Caltech) is developing a solar module that splits sunlight into individual color bands to improve the efficiency of solar electricity generation. For PV to maintain momentum in the marketplace, the energy conversion efficiency must increase significantly to result in reduced power generation costs. Most conventional PV modules provide 15-20% energy conversion efficiency because their materials respond efficiently to only a narrow band of color in the sun's spectrum, which represents a significant constraint on their efficiency. To increase the light conversion efficiency, Caltech will assemble a solar module that includes several cells containing several different absorbing materials, each tuned to a different color range of the sun's spectrum. Once light is separated into color bands, Caltech's tailored solar cells will match each separated color band to dramatically improve the overall efficiency of solar energy conversion. Caltech's approach to improve the efficiency of PV solar generation should enable improved cost-competitiveness for PV energy.
California Institute of Technology (Caltech)
Program: 
Project Term: 
03/01/2012 to 06/01/2015
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
The California Institute of Technology (Caltech) is developing a distributed automation system that allows distributed generators--solar panels, wind farms, thermal co-generation systems--to effectively manage their own power. To date, the main stumbling block for distributed automation systems has been the inability to develop software that can handle more than 100,000 distributed generators and be implemented in real time. Caltech's software could allow millions of generators to self-manage through local sensing, computation, and communication. Taken together, localized algorithms can support certain global objectives, such as maintaining the balance of energy supply and demand, regulating voltage and frequency, and minimizing cost. An automated, grid-wide power control system would ease the integration of renewable energy sources like solar power into the grid by quickly transmitting power when it is created, eliminating the energy loss associated with the lack of renewable energy storage capacity of the grid.
California Institute of Technology (Caltech)
Program: 
Project Term: 
03/09/2015 to 09/30/2017
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
The California Institute of Technology (Caltech) team is using first-principles reasoning (i.e. a mode of examination that begins with the most basic physical principles related to an issue and "builds up" from there) and advanced computational modeling to ascertain the underlying mechanisms that cause acoustic waves to affect catalytic reaction pathways. The team will first focus their efforts on two types of reactions for which there is strong experimental evidence that acoustic waves can enhance catalytic activity: Carbon Monoxide (CO) oxidation, and Ethanol decomposition. Armed with this new understanding, the team will suggest promising applications for acoustic wave enhanced catalysis to new reactions with large energy and emissions footprints, such as ammonia synthesis. As an ARPA-E IDEAS project, this research is at a very early stage. However, this novel approach to acoustic wave enhanced catalysis has the potential to improve energy and resource efficiency across broad swathes of the chemical, industrial, and other sectors of the economy.
Program: 
Project Term: 
01/06/2014 to 01/05/2015
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Calysta Energy will develop a new bioreactor technology to enable the efficient biological conversion of methane into liquid fuels. While reasonably efficient, Gas-to-liquid (GTL) conversion is difficult to accomplish without costly and complex infrastructure. Biocatalysts are anticipated to reduce the cost of GTL conversion. Calysta will address this by using computational fluid dynamics to model best existing high mass transfer bioreactor designs and overcome existing limitations. Calysta will make the newly developed technology available to the broader research community, which could help other research groups to quickly test and commercialize their methane conversion processes.
Program: 
Project Term: 
02/06/2019 to 02/05/2022
Project Status: 
ACTIVE
Project State: 
Pennsylvania
Technical Categories: 
Carnegie Mellon will combine its expertise in additive manufacturing (AM) with Westinghouse's knowhow in nuclear reactor component fabrication to develop an innovative process for AM of nuclear components. The team chose to redesign nuclear reactor spacer grids as a test case because they are a particularly difficult component to manufacture. The role of spacer grids is to provide mechanical support to nuclear fuel rods within a reactor and reduce vibration as well as cause mixing of the cooling fluid. The team will alter the traditional AM process, including using nonstandard powders to optimize performance and reduce cost. If the project is successful, it could pave the way for other reactor components to be additively manufactured, enabling the rapid deployment of advanced reactors.
Program: 
Project Term: 
09/16/2019 to 12/15/2022
Project Status: 
ACTIVE
Project State: 
Pennsylvania
Technical Categories: 

The Carnegie Mellon team will develop a modular radial heat exchanger that includes flow through pin arrays and counter-flow headers. The team will fabricate the heat exchanger via laser powder bed fusion additive manufacturing, with superalloys selected for high temperature and high pressure capability. Multiple approaches will be used to smooth the heat exchanger components' internal passages to minimize pressure drop. Developing 3D metals printing technology for high temperature heat exchangers would radically remove constraints on heat exchanger design, making it a potentially disruptive technology.

Carnegie Mellon University (CMU)
Program: 
Project Term: 
02/27/2012 to 03/28/2015
Project Status: 
ALUMNI
Project State: 
Pennsylvania
Technical Categories: 
Carnegie Mellon University (CMU) is developing a new nanoscale magnetic material that will reduce the size, weight, and cost of utility-scale PV solar power conversion systems that connect directly to the grid. Power converters are required to turn the energy that solar power systems create into useable energy for the grid. The power conversion systems made with CMU's nanoscale magnetic material have the potential to be 150 times lighter and significantly smaller than conventional power conversion systems that produce similar amounts of power.
Case Western Reserve University
Program: 
Project Term: 
01/09/2013 to 02/11/2019
Project Status: 
ALUMNI
Project State: 
Ohio
Technical Categories: 

Case Western Reserve University is developing a water-based, all-iron flow battery for grid-scale energy storage at low cost. Flow batteries store chemical energy in external tanks instead of within the battery container. Using iron provides a low-cost, safe solution for energy storage because iron is both abundant and non-toxic. This design could drastically improve the energy storage capacity of stationary batteries at 10-20% of today's cost. Ultimately, this technology could help reduce the cost of stationary energy storage enough to facilitate the adoption and deployment of renewable energy technology.

Case Western Reserve University
Program: 
Project Term: 
01/01/2014 to 06/30/2016
Project Status: 
ALUMNI
Project State: 
Ohio
Technical Categories: 
Case Western Reserve University is developing a specialized electrochemical cell that produces titanium from titanium salts using a series of layered membranes. Conventional titanium production is expensive and inefficient due to the high temperatures and multiple process steps required. The Case Western concept is to reduce the energy required for titanium metal production using an electrochemical reactor with multiple, thin membranes. The multi-membrane concept would limit side reactions and use one third of the energy required by today's production methods.
Case Western Reserve University
Program: 
Project Term: 
01/01/2012 to 06/30/2015
Project Status: 
ALUMNI
Project State: 
Ohio
Technical Categories: 

Case Western Reserve University is developing a highly magnetic iron-nitride alloy to use in the magnets that power electric motors found in EVs and renewable power generators. This would reduce the overall price of the motor by eliminating the expensive imported rare earth minerals typically found in today's best commercial magnets. The iron-nitride powder is sourced from abundant and inexpensive materials found in the U.S. The ultimate goal of this project is to demonstrate this new magnet system, which contains no rare earths, in a prototype electric motor. This could significantly reduce the amount of greenhouse gases emitted in the U.S. each year by encouraging the use of clean alternatives to oil and coal.

Case Western Reserve University
Program: 
Project Term: 
05/10/2016 to 12/31/2019
Project Status: 
ALUMNI
Project State: 
Ohio
Technical Categories: 

Case Western Reserve University will develop a data analytics approach to building-efficiency diagnosis and prognostics. Their tool, called EDIFES (Energy Diagnostics Investigator for Efficiency Savings), will not require complex or expensive computational simulation, physical audits, or building automation systems. Instead, the tool will map a building's energy signature through a rigorous analysis of multiple datastreams. Combining knowledge of specific climatic, weather, solar insolation, and utility meter data through data assembly, the team will analyze these time-series datastreams to reveal patterns and relationships that were previously ignored or neglected. EDIFES will provide a virtual energy audit combined with a predictive energy usage calculator for efficiency solutions without setting foot in a building. The team's goal is to design EDIFES in such a way that beyond time-series, whole building utility data, only minimal information will be required from the building owner for accurate virtual energy audits that identify efficiency problems and solutions and provide continuous efficiency monitoring. EDIFES will be a resource for equipment providers and contractors to illustrate replacement equipment value, a mechanism for utilities to measure the impact of energy efficiency programs, and a tool for financiers to evaluate the potential risk and opportunity of efficiency investments. EDIFES will target the light commercial building space where minimal tools are available and a high potential for savings exists.

Case Western Reserve University
Program: 
Project Term: 
09/01/2010 to 11/30/2012
Project Status: 
ALUMNI
Project State: 
Ohio
Technical Categories: 
There is a constant demand for better performing, more compact, lighter-weight, and lower-cost electronic devices. Unfortunately, the materials traditionally used to make components for electronic devices have reached their limits. Case Western Reserve University is developing capacitors made of new materials that could be used to produce the next generation of compact and efficient high-powered consumer electronics and electronic vehicles. A capacitor is an important component of an electronic device. It stores an electric charge and then discharges it into an electrical circuit in the device. Case Western is creating its capacitors from titanium, an abundant material extracted from ore which can be found in the U.S. Case Western's capacitors store electric charges on the surfaces of films, which are grown on a titanium alloy electrode that is formed as a spinal column with attached branches. The new material and spine design make the capacitor smaller and lighter than traditional capacitors, and they enable the component to store 300% more energy than capacitors of the same weight made of tantalum, the current industry standard. Case Western's titanium-alloy capacitors also spontaneously self-repair, which prolongs their life.
Program: 
Project Term: 
05/01/2018 to 07/15/2019
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

The Catalina Sea Ranch team will lead a MARINER Category 1 project to design an advanced giant kelp cultivation system for deployment on open ocean sites to assess their ability to produce economical and sustainable biomass for a future biofuels industry. The team plans to develop solutions to the main challenges facing macroalgae cultivation: scalability of seeding, cultivation, and harvest; survivability of the offshore installations; energy use and ecosystem impact; predictability of yield and quality of harvested biomass; and cost effectiveness. The effort will begin by optimizing macroalgae cultivation in the open ocean through site-specific adaption and techno-economic modeling of a proven offshore cultivation system. In collaboration with its commercial partners, the team will then use a direct seeding method, which deposits young plants onto specially designed substrates to save money and time during the hatchery and deployment phase. Additionally, the team's mechanical partial harvest technology, which allows the same plant to be cut multiple times, is expected to further reduce annual seeding costs compared to the state of the art systems.

Center for Power Electronics Systems (CPES) at Virginia Tech
Program: 
Project Term: 
09/01/2010 to 07/31/2014
Project Status: 
ALUMNI
Project State: 
Virginia
Technical Categories: 
The Center for Power Electronics Systems (CPES) at Virginia Tech is finding ways to save real estate on a computer's motherboard that could be used for other critical functions. Every computer processor today contains a voltage regulator that automatically maintains a constant level of electricity entering the device. These regulators contain bulky components and take up about 30% of a computer's motherboard. CPES is developing a voltage regulator that uses semiconductors made of gallium nitride on silicon (GaN-on-Si) and high-frequency soft magnetic material. These materials are integrated on a small, 3D chip that can handle the same amount of power as traditional voltage regulators at 1/10 the size and with improved efficiency. The small size also frees up to 90% of the motherboard space occupied by current voltage regulators.
Center for Power Electronics Systems (CPES) at Virginia Tech
Program: 
Project Term: 
09/01/2010 to 11/30/2013
Project Status: 
ALUMNI
Project State: 
Virginia
Technical Categories: 
The Center for Power Electronics Systems (CPES) at Virginia Tech is developing an extremely efficient power converter that could be used in power adapters for small, light-weight laptops and other types of mobile electronic devices. Power adapters convert electrical energy into usable power for an electronic device, and they currently waste a lot of energy when they are plugged into an outlet to power up. CPES is integrating high-density capacitors, new magnetic materials, high-frequency integrated circuits, and a constant-flux transformer to create its efficient power converter. The high-density capacitors enable the power adapter to store more energy. The new magnetic materials also increase energy storage, and they can be precisely dispensed using a low-cost ink-jet printer which keeps costs down. The high-frequency integrated circuits can handle more power, and they can handle it more efficiently. And, the constant-flux transformer processes a consistent flow of electrical current, which makes the converter more efficient.
Program: 
Project Term: 
02/01/2013 to 02/15/2015
Project Status: 
ALUMNI
Project State: 
Utah
Technical Categories: 
Ceramatec is developing a small-scale reactor to convert natural gas into benzene--a feedstock for industrial chemicals or liquid fuels. Natural gas as a byproduct is highly abundant, readily available, and inexpensive. Ceramatec's reactor will use a one-step chemical conversion process to convert natural gas into benzene. This one-step process is highly efficient and prevents the build-up of solid residue that can occur when gas is processed. The benzene that is produced can be used as a starting material for nylons, polycarbonates, polystyrene, epoxy resins, and as a component of gasoline.
Program: 
Project Term: 
02/01/2013 to 03/31/2017
Project Status: 
ALUMNI
Project State: 
Utah
Technical Categories: 

Ceramatec is developing a solid-state fuel cell that operates in an 'intermediate' temperature range that could overcome persistent challenges faced by both high temperature and low temperature fuel cells. The advantages compared to higher temperature fuel cells are less expensive seals and interconnects, as well as longer lifetime. The advantages compared to low temperature fuel cells are reduced platinum requirements and the ability to run on fuels other than hydrogen, such as natural gas or methanol. Ceramatec's design would use a new electrolyte material to transport protons within the cell and advanced electrode layers. The project would engineer a fuel cell stack that performs at lower cost than current automotive designs, and culminate in the building and testing of a short fuel cell stack capable of meeting stringent transportation requirements.

Program: 
Project Term: 
01/01/2014 to 01/14/2017
Project Status: 
ALUMNI
Project State: 
Utah
Technical Categories: 
Ceramatec is developing new batteries that make use of a non-porous, high ion conductivity ceramic membrane employing a lithium-sulfur (Li-S) battery chemistry. Porous separators found in today's batteries contain liquids that negatively impact cycle life. To address this, Ceramatec's battery includes a ceramic membrane to help to hold charge while not in use. This new design would also provide load bearing capability, improved mechanical integrity, and extend battery life. Ceramatec will build and demonstrate its innovative, low-cost, non-porous membrane in a prototype Li-S battery with a smaller size and higher storage capacity than conventional batteries. This battery pack could offer high energy density--greater than 300 Watt hours per kilogram--at a price of approximately $125-150/kWh.
Program: 
Project Term: 
01/01/2010 to 12/31/2013
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Ceres is developing bigger and better grasses for use in biofuels. The bigger the grass yield, the more biomass, and more biomass means more biofuel per acre. Using biotechnology, Ceres is developing grasses that will grow bigger with less fertilizer than current grass varieties. Hardier, higher-yielding grass also requires less land to grow and can be planted in areas where other crops can't grow instead of in prime agricultural land. Ceres is conducting multi-year trials in Arizona, Texas, Tennessee, and Georgia which have already resulted in grass yields with as much as 50% more biomass than yields from current grass varieties.
Program: 
Project Term: 
04/01/2020 to 03/31/2023
Project Status: 
ACTIVE
Project State: 
Utah
Technical Categories: 
Chemtronergy will develop an advanced solid oxide fuel cell (SOFC) system to electrochemically convert ammonia into electricity. Conventional SOFC systems are manufactured using ceramic fabrication techniques that are time-consuming, energy-intensive, and have high material costs. SOFCs also typically operate at 700-900°C to chemically activate the fuel feedstock and ensure that it is sufficiently cracked or reformed for electrochemical use. This high temperature, however, imposes harsh operating conditions and stresses on the materials, which further increases costs. To address these challenges, the team proposes to lower the operating temperature below 650°C and to develop anode, cathode, and electrolyte materials using a combination of advanced materials discovery, reaction kinetics modeling, and 3D printing technology for large-scale rapid prototyping. The team hopes to greatly reduce the cost of SOFC systems while providing a distributed power-generating option with high efficiency, long life, and a reduced carbon footprint.
Program: 
Project Term: 
11/15/2017 to 05/29/2020
Project Status: 
ACTIVE
Project State: 
Utah
Technical Categories: 

Chemtronergy will develop an advanced solid oxide fuel cell (SOFC) system to electrochemically convert ammonia into electricity. Conventional SOFC systems are manufactured using ceramic fabrication techniques that are time-consuming, energy-intensive, and have high material costs. SOFCs also typically operate at 700-900°C to chemically activate the fuel feedstock and ensure that it is sufficiently cracked or reformed for electrochemical use. This high temperature, however, imposes harsh operating conditions and stresses on the materials, which further increases costs. To address these challenges, the team proposes to lower the operating temperature below 650°C and to develop anode, cathode, and electrolyte materials using a combination of advanced materials discovery, reaction kinetics modeling, and 3D printing technology for large-scale rapid prototyping. The team hopes to greatly reduce the cost of SOFC systems while providing a distributed power-generating option with high efficiency, long life, and a reduced carbon footprint.

Program: 
Project Term: 
01/01/2012 to 12/31/2015
Project Status: 
CANCELLED
Project State: 
Illinois
Technical Categories: 
Chromatin will engineer sweet sorghum--a plant that naturally produces large quantities of sugar and requires little water--to accumulate the fuel precursor farnesene, a molecule that can be blended into diesel fuel. Chromatin's proprietary technology enables the introduction of a completely novel biosynthetic process into the plant to produce farnesene, enabling sorghum to accumulate up to 20% of its weight as fuel. Chromatin will also introduce a trait to improve biomass yields in sorghum. The farnesene will accumulate in the sorghum plants--similar to the way in which it currently stores sugar--and can be extracted and converted into a type of diesel fuel using low-cost, conventional methods. Sorghum can be easily grown and harvested in many climates with low input of water or fertilizer, and is already planted on an agricultural scale. The technology will be demonstrated in a model plant, guayule, before being used in sorghum.
Program: 
Project Term: 
12/22/2015 to 03/21/2017
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

The Citrine Informatics team is demonstrating a proof-of-concept for a system that would use experimental work to intelligently guide the investigation of new solid ionic conductor materials. If successful, the project will create a new approach to material discovery generally and new direction for developing promising ionic conductors specifically. The project will aggregate data (both quantitative and meta-data related to experimental conditions) relevant to ionic conductors from the published literature and build advanced, machine learning models for prediction based upon the resulting large database. The team's system will also experimentally explore the new materials space identified and suggested by the models. The Citrine project could provide researchers near-real-time feedback as they perform experiments, allowing them to dynamically select the most promising research pathways. This would in turn unlock more rapid ionic conductor identification and development, and transform the fields of theoretical and experimental materials science at-large.

City University of New York (CUNY) Energy Institute
Program: 
Project Term: 
09/02/2010 to 02/28/2014
Project Status: 
ALUMNI
Project State: 
New York
Technical Categories: 

City University of New York (CUNY) Energy Institute is developing less expensive, more efficient, smaller, and longer-lasting power converters for energy-efficient LED lights. LEDs produce light more efficiently than incandescent lights and last significantly longer than compact fluorescent bulbs, but they require more sophisticated power converter technology, which increases their cost. LEDs need more sophisticated converters because they require a different type of power (low-voltage direct current, or DC) than what's generally supplied by power outlets. CUNY Energy Institute is developing sophisticated power converters for LEDs that contain capacitors made from new, nanoscale materials. Capacitors are electrical components that are used to store energy. CUNY Energy Institute's unique capacitors are configured with advanced power circuits to more efficiently control and convert power to the LED lighting source. They also eliminate the need for large magnetic components, instead relying on networks of capacitors that can be easily printed on plastic substrate. CUNY Energy Institute's prototype LED power converter already meets DOE's 2020 projections for the energy efficiency of LED power converters.

City University of New York (CUNY) Energy Institute
Program: 
Project Term: 
09/15/2010 to 03/31/2015
Project Status: 
ALUMNI
Project State: 
New York
Technical Categories: 

City University of New York (CUNY) Energy Institute is working to tame dendrite formation and to enhance the lifetime of Manganese in order to create a long-lasting, fully rechargeable battery for grid-scale energy storage. Traditional consumer-grade disposable batteries are made of Zinc and Manganese, two inexpensive, abundant, and non-toxic metals, but these disposable batteries can only be used once. If they are recharged, the Zinc in the battery develops filaments called dendrites that grow haphazardly and disrupt battery performance, while the Manganese quickly loses its ability to store energy. CUNY Energy Institute is also working to reduce dendrite formation by pumping fluid through the battery, enabling researchers to fix the dendrites as they form. The team has already tested its Zinc battery through 3,000 recharge cycles (and counting). CUNY Energy Institute aims to demonstrate a better cycle life than lithium-ion batteries, which can be up to 20 times more expensive than Zinc-based batteries.

Program: 
Project Term: 
09/30/2015 to 05/28/2019
Project Status: 
ALUMNI
Project State: 
South Carolina
Technical Categories: 

Clemson University is partnering with Carnegie Mellon University (CMU), the Donald Danforth Plant Science Center, and Near Earth Autonomy to develop and operate an advanced plant phenotyping system, incorporating modeling and rapid prediction of plant performance to drive improved yield and compositional gains for energy sorghum. The team will plant and phenotype one of the largest sets of plant types in the TERRA program. Researchers will design and build two phenotyping platforms - an aerial sensor platform and a ground-based platform. The aerial platform, developed by Near Earth Autonomy, is a fast moving, autonomous helicopter outfitted with sensors that will collect image data from above. The ground platforms are customized robots from CMU that will drive between crop rows below the plant canopy and collect data using two distinct sensor suites. The first will use sophisticated cameras and imaging algorithms to develop detailed 3D models of individual plants and their canopy structure. The second will have the unique ability to directly contact the plant in order to systematically measure physical characteristics that were previously measured manually with labor-intensive, low-throughput methods. The team will use machine learning techniques to analyze the data gathered from the phenotyping systems and translate this into predictive algorithms for accelerated breeding of improved biofuel plants.

Program: 
Project Term: 
04/08/2020 to 04/07/2022
Project Status: 
ACTIVE
Project State: 
Pennsylvania
Carnegie Mellon University will use deep reinforcement learning and atomistic machine learning potentials to predict catalyst surface stability under reaction conditions. Current methods for determining the metastability of bifunctional and complex surfaces undergoing reaction are difficult and expensive. Carnegie Mellon's technology will enable stability analysis in both traditional catalysts and new classes of materials, including those used in tribology (friction), corrosion-resistant alloys, additive manufacturing, and battery materials.
Program: 
Project Term: 
07/01/2010 to 06/30/2012
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Codexis is developing new and efficient forms of enzymes known as carbonic anhydrases to absorb CO2 more rapidly and under challenging conditions found in the gas exhaust of coal-fired power plants. Carbonic anhydrases are common and are among the fastest enzymes, but they are not robust enough to withstand the harsh environment found in the power plant exhaust steams. In this project, Codexis will be using proprietary technology to improve the enzymes' ability to withstand high temperatures and large swings in chemical composition. The project aims to develop a carbon-capture process that uses less energy and less equipment than existing approaches. This would reduce the cost of retrofitting today's coal-fired power plants.
Program: 
Project Term: 
07/10/2014 to 07/09/2016
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Cogenra Solar is developing a hybrid solar converter with a specialized light-filtering mirror that splits sunlight by wavelength, allowing part of the sunlight spectrum to be converted directly to electricity with photovoltaics (PV), while the rest is captured and stored as heat. By integrating a light-filtering mirror that passes the visible part of the spectrum to a PV cell, the system captures and converts as much as possible of the photons into high-value electricity and concentrates the remaining light onto a thermal fluid, which can be stored and be used as needed. Cogenra's hybrid solar energy system also captures waste heat from the solar cells, providing an additional source of low-temperature heat. This hybrid converter could make more efficient use of the full solar spectrum and can provide inexpensive solar power on demand.
Colorado School of Mines
Program: 
Project Term: 
01/01/2017 to 11/30/2018
Project Status: 
CANCELLED
Project State: 
Colorado

The Colorado School of Mines will develop a new membrane for redox flow battery systems based on novel, low-cost materials. The membrane is a hybrid polymer that includes heteropoly acid molecules and a special purpose fluorocarbon-based synthetic rubber called a fluoroelastomer. The team will enhance the membrane's selectivity by refining the polymer structure, employing crosslinking techniques, and also through doping the polymer with cesium. The fluoroelastmer is commercially available, thereby contributing to a superior performance-to-cost ratio for the membrane. Flow battery experts at Lawrence Berkeley Laboratory will extensively test the selectivity, conductivity, and stability of the membranes developed in this project, and 3M will apply its decades of membrane fabrication experience to scale-up the new technology. If successfully developed, the separator in this project will increase efficiency and reduce cost in existing flow battery systems such as the all-iron redox flow battery.

Colorado School of Mines
Program: 
Project Term: 
03/13/2017 to 09/12/2018
Project Status: 
ALUMNI
Project State: 
Colorado
Technical Categories: 

The Colorado School of Mines will develop a new method for the high-throughput discovery and screening of thermoelectric materials. The objective is to develop a new class of thermoelectric materials that can enable heat-to-electricity efficiencies greater than 20%. Aerosol spray deposition will be used to collect particles on the solid surfaces, allowing high throughput synthesis with finely tuned composition control. To achieve the thermoelectric performance desired, a tight feedback loop between synthesis, characterization, and theory will be employed to actively guide the design of experiments. To identify materials with high mobility and low thermal conductivity, the team developed metrics that combine experimental and computational training data. These efforts are guided by the team's existing high-throughput calculation database, which has identified specific families of previously unexplored materials with high potential for thermoelectric performance. Over the last two years, these computational methods have been applied to 10,000 compounds, yielding the most extensive database of thermoelectric performance in the world. By considering thousands of compositions within a single structural family, trends in electronic and thermal conductivity emerge that could not have been predicted from a few samples produced with traditional bulk ceramic methods. High-throughput search techniques are particularly critical because the desired qualities are likely to only occur within a narrow chemical composition. The team expects to grow and characterize more than 20 macroscopic samples per day, a significant increase in throughput compared to conventional approaches.

Program: 
Project Term: 
09/07/2018 to 09/06/2020
Project Status: 
ACTIVE
Project State: 
Colorado
Technical Categories: 
The Colorado School of Mines will develop a hybrid power generation system that leverages a pressurized, intermediate-temperature solid oxide fuel cell (SOFC) stack and an advanced low-energy-content fuel internal combustion (IC) engine. The custom-designed, turbocharged IC engine will use the exhaust from the anode side of the SOFC as fuel and directly drive a specialized compressor-expander that supplies pressurized air to the fuel cell. High capital costs and poor durability have presented significant barriers to the widespread commercial adoption of SOFC technology. In part, these challenges have been associated with SOFC high operating temperatures of 750-1000°C (1382-1832°F). This team will use a robust, metal-supported SOFC (600°C or 1112°F) technology that will provide greater durability, better heat management, and superior sealing over standard ceramic-supported SOFC designs. The modified diesel IC engine in a hybrid system provides a low-cost, controllable solution to use the remaining chemical energy in the fuel cell exhaust. The system will use the hot air and exhaust gases it produces to keep components running at the proper temperatures to maximize overall efficiency. The team will also develop supporting equipment, including a specialized compressor-expander and power inverter. The new system has the potential to enable highly-efficient, cost-effective distributed power generation.
Program: 
Project Term: 
10/01/2014 to 09/21/2020
Project Status: 
ACTIVE
Project State: 
Colorado
Technical Categories: 

The Colorado School of Mines is developing a mixed proton and oxygen ion conducting electrolyte that will allow a fuel cell to operate at temperatures less than 500°C. By using a proton and oxygen ion electrolyte, the fuel cell stack is able to reduce coking - which clogs anodes with carbon deposits - and enhance the process of turning hydrocarbon fuels into hydrogen. Today's ceramic fuel cells are based on oxygen-ion conducting electrolytes and operate at high temperatures. Mines' advanced mixed proton and oxygen-ion conducting fuel cells will operate on lower temperatures, and have the capacity to run on hydrogen, ethanol, methanol, or methane, representing a drastic improvement over using only oxygen-ion conducting electrolytes. Additionally, the fuel cell will leverage a recently developed ceramic processing technique that decreases fuel cell manufacturing cost and complexity. Additionally, their technology will reduce the number of manufacturing steps from 15 to 3, drastically reducing the cost of distributed generation applications.

Colorado School of Mines
Program: 
Project Term: 
09/27/2016 to 07/31/2018
Project Status: 
ALUMNI
Project State: 
Colorado
Technical Categories: 

The Colorado School of Mines will develop a membrane reactor concept to synthesize ammonia at ambient pressure. In traditional ammonia production processes, nitrogen (N2) and hydrogen (H2) compete for identical catalyst sites, and the presence of each inhibits the other, with the overall rate reflecting a compromise. The team proposes decoupling and independently controlling the N2 and H2 dissociation by dedicating one side of the composite membrane to each. In this way, the catalysts may be individually optimized. Highly effective catalysts have been previously demonstrated for H2 dissociation, and the team's focus will be on exploring early transition metals which have shown great promise as catalysts for N2 dissociation. When perfected, this technology will allow the production of ammonia at ambient pressure, reducing the scale and number of steps required in the process. This method is also an improvement over electrochemical processes, which have a more complicated design and reduced efficiency due to the need for an external voltage.

Program: 
Project Term: 
07/12/2019 to 07/11/2022
Project Status: 
ACTIVE
Project State: 
Colorado
Technical Categories: 
The Colorado School of Mines will develop a more efficient method for both the conversion of hydrogen and nitrogen to ammonia and the generation of high purity hydrogen from ammonia for fuel cell fueling stations. Composed of 17.6% hydrogen by mass, ammonia also has potential as a hydrogen carrier and carbon-free fuel. The team will develop a new technology to generate fuel cell-quality hydrogen from ammonia using a membrane based reactor. In addition, similar catalytic membrane reactor technology will be developed for synthesis of ammonia from nitrogen and hydrogen at reduced pressure and temperature. This is aided by selective removal of ammonia, which enables equilibrium limitations to be surpassed, a fundamental constraint in conventional Haber-Bosch ammonia synthesis.
Colorado State University (CSU)
Program: 
Project Term: 
10/01/2016 to 09/30/2019
Project Status: 
ALUMNI
Project State: 
Colorado
Technical Categories: 

The team, led by Colorado State University (CSU), will develop a test site facility near Fort Collins, CO where ARPA-E can evaluate the methane sensing technologies of the MONITOR project teams, as required by the MONITOR FOA. The CSU team will design, construct, and operate a natural gas testing facility that can determine whether MONITOR technologies have met or exceeded the technical performance targets set forth by the MONITOR program. The test facility will be designed to realistically mimic the layout of a broad range of natural gas facilities and equipment. The test facility will include a number of controlled natural gas emission release points that will be realistic in terms of location, magnitude, frequency, duration, and gas composition. The design will also include sub-facilities that can simulate different aspects of the natural gas industry supply chain such as dry gas production, wet gas production, midstream compression, metering and regulating stations, and underground pipeline releases. The test site is located in the Denver-Julesburg basin, but will be sufficiently far enough away from natural gas operations that background levels of methane will be very low. Thus, the site will provide a realistic, but highly controllable environment within which the MONITOR technologies can be accurately tested.

Colorado State University (CSU)
Program: 
Project Term: 
07/03/2017 to 10/20/2020
Project Status: 
ACTIVE
Project State: 
Colorado
Technical Categories: 

Colorado State University (CSU) will develop a high-throughput ground-based robotic platform that will characterize a plant's root system and the surrounding soil chemistry to better understand how plants cycle carbon and nitrogen in soil. CSU's robotic platform will use a suite of sensor technologies to investigate crop genetic-environment interaction and generate data to improve models of chemical cycling of soil carbon and nitrogen in agricultural environments. The platform will collect information on root structure and depth, and deploy a novel spectroscopic technology to quantify levels of carbon and other key elements in the soil. The technology proposed by the Colorado State team aims to speed the application of genetic and genomic tools for the discovery and deployment of root traits that control plant growth and soil carbon cycling. Crops will be studied at two field sites in Colorado and Arizona with diverse advantages and challenges to crop productivity, and the data collected will be used to develop a sophisticated carbon flux model. The sensing platform will allow characterization of the root systems in the ground and lead to improved quantification of soil health. The collected data will be managed and analyzed through the CyVerse "big data" computational analytics platform, enabling public access to data connecting aboveground plant traits with belowground soil carbon accumulation.

Colorado State University (CSU)
Program: 
Project Term: 
04/04/2013 to 10/03/2015
Project Status: 
ALUMNI
Project State: 
Colorado
Technical Categories: 
Colorado State University (CSU) is developing technology to rapidly introduce novel traits into crops that currently cannot be readily engineered. Presently, a limited number of crops can be engineered, and the processes are not standardized - restricting the agricultural sources for engineered biofuel production. More--and more diverse--biofuel crops could substantially improve the efficiency, time scale, and geographic range of biofuel production. CSU's approach would enable simple and efficient engineering of a broad range of bioenergy crops using synthetic biology tools to standardize their genetic modification.
Colorado State University (CSU)
Program: 
Project Term: 
11/10/2015 to 05/09/2019
Project Status: 
ALUMNI
Project State: 
Colorado
Technical Categories: 
Colorado State University (CSU) and its partners, Modine and Barber-Nichols, will develop a thermally powered supplemental cooling system for thermoelectric power plants that will enable dry cooling. The technology features a transformational turbo-compressor and low-cost, high-performance heat exchangers that are currently mass produced for the HVAC industry. To operate, low-grade waste heat from the power plant combustion exhaust gases, or flue gas, is captured and used to power a highly efficient turbo-compressor system. The compressor pressurizes vapor in a refrigeration cycle to remove up to 30% of the power plant cooling load. The cooling system utilizes proprietary technology to maximize the turbo compressor and total system efficiencies, enabling a low production cost and an overall smaller, less expensive dry-cooling system. As a result, the cooling system could allow thermoelectric power plants to maintain a high efficiency while eliminating the use of local water resources. Furthermore, due to its very high performance, the turbo-compression cooling system has potential applications in a range of other markets, including commercial HVAC systems, data center cooling, and distributed cooling industries.
Colorado State University (CSU)
Program: 
Project Term: 
05/05/2016 to 11/20/2019
Project Status: 
ALUMNI
Project State: 
Colorado
Technical Categories: 

Colorado State University (CSU) and its partners are developing an inexpensive, polymer-based, energy-saving material that can be applied to windows as a retrofit. The team will develop a coating consisting of polymers that can rapidly self-assemble into orderly layers that will reflect infrared wavelengths but pass visible light. As such, the coating will help reduce building cooling requirements and energy use without darkening the room. The polymers can be applied as a paint, meaning that deployment could be faster, less expensive, and more widespread because homeowners can apply the window coatings themselves instead of paying for a technician. The team estimates that up to 75% of the dry film could be produced from commodity plastic, which has the potential to significantly reduce the current costs associated with manufacturing window coatings.

Program: 
Project Term: 
07/01/2010 to 06/30/2014
Project Status: 
ALUMNI
Project State: 
New York
Technical Categories: 

Columbia University is using carbon dioxide (CO2) from ambient air, ammonia--an abundant and affordable chemical--and a bacteria called N. europaea to produce liquid fuel. The Columbia University team is feeding the ammonia and CO2 into an engineered tank where the bacteria live. The bacteria capture the energy from ammonia and then use that energy to convert CO2 into a liquid fuel. When the bacteria use up all the ammonia, renewable electricity can regenerate it and pump it back into the system--creating a continuous fuel-creation cycle. In addition, Columbia University is also working with the bacteria A. ferrooxidans to capture and use energy from ferrous iron to produce liquid fuels from CO2.

Program: 
Project Term: 
03/04/2016 to 03/03/2017
Project Status: 
ALUMNI
Project State: 
New York
Technical Categories: 

Columbia University will develop a new platform for generating multiple simultaneous optical channels (wavelengths) with low power dissipation, thereby enabling optical interconnects for low power computing. Optical interconnect links communicate using optical fibers that carry light. Wavelength-division multiplexing (WDM) is a technology that combines a number of optical carrier signals on a single optical fiber by using different wavelengths. This technique enables bidirectional communications over strands of fiber, dramatically increasing capacity. Low-power lasers generate the wavelengths used in a WDM system, but it is important to stabilize the wavelength for each channel to allow for precise separation and filtering. The importance of stabilization increases when the number and density of wavelength channels increases. Energy use also increases because each of the laser sources must be individually stabilized. In contrast, the Columbia team proposes using a single high-powered stabilized laser to generate greater than 50 wavelength sources with high efficiency using an on-chip comb. This approach can improve laser energy efficiency from 0.01% to 10%.

Program: 
Project Term: 
03/01/2015 to 05/30/2016
Project Status: 
ALUMNI
Project State: 
New York
Technical Categories: 

The innovation lies in the exploitation of novel natural energy source: reduced metal deposits. The energy released during oxidation of these metals could be used to reduce CO2 into fuels and chemicals reducing petroleum usage.This proposed project fits within the Chemical-Chemical Area of Interest, as it involves the coupling of the oxidation of reduced minerals in the Earth's crust to the production of reduced carbon chemicals for fuel utilization. This addresses both of Mission Areas of ARPA-E as the co-generation of fuels during copper bioleaching will potentially reduce the import of energy from foreign sources, reduce greenhouse gas emissions, improve energy efficiency in the mining industry, and ensure that the U.S. maintains a lead in the development of this disruptive new technology.

Columbia University
Program: 
Project Term: 
04/01/2014 to 10/31/2019
Project Status: 
ALUMNI
Project State: 
New York
Technical Categories: 
Columbia University will create high-performance, low-cost, vertical gallium nitride (GaN) devices using a technique called spalling, which involves exfoliating a working circuit and transferring it to another material. Columbia and its project partners will spall and bond entire transistors from high-performance GaN wafers to lower cost silicon substrates. Substrates are thin wafers of semiconducting material needed to power devices like transistors and integrated circuits. GaN substrates operate much more efficiently than silicon substrates, particularly at high voltages, but the high cost of GaN is a barrier to its widespread use. The spalling technique developed by Columbia will allow GaN substrates to be reused, lowering their manufacturing cost.
Columbia University
Program: 
Project Term: 
06/10/2016 to 09/09/2017
Project Status: 
ALUMNI
Project State: 
New York
Technical Categories: 
The Columbia University team is developing a proof-of-concept solid-state solution to generate electricity from high-temperature waste heat (~900 K) using thermal radiation between a hot object placed in extreme proximity (<100 nm) to a cooler photovoltaic (PV) cell. In this geometry, thermal radiation can be engineered such that its spectrum is quasi-monochromatic and aligned with the PV cell's bandgap frequency. In this case, it is estimated that electricity can be generated with a conversion efficiency beyond 25% and with a power density that could greatly outperform currently available thermal photovoltaic devices and other thermoelectric generator designs. To overcome the significant challenge of maintaining the proper distance between a hot side emitter and a cooler PV junction to prevent device shorting, the team will develop microelectromechanical actuation systems to optimally orient the PV cell. By providing a universal solid-state solution that can, in principle, be mounted and scaled to any hot surface, this technology could help retrieve a significant fraction of heat wasted by U.S. industries
Columbia University
Program: 
Project Term: 
09/25/2017 to 03/24/2020
Project Status: 
ACTIVE
Project State: 
New York
Technical Categories: 

Columbia University will develop a new datacenter architecture co-designed with state-of-the-art silicon photonic technologies to reduce system-wide energy consumption. The team's approach will improve data movement between processor/memory and will optimize resource allocation throughout the network to minimize idle times and wasted energy. Data transfer in datacenters occurs over a series of interconnects that link different server racks of the datacenter together. Networks in modern mega-scale datacenters are becoming increasingly complicated. One by-product of this complexity is that on average a large number of these interconnections are idle due to application specific resource bottlenecks, effectively reducing the energy efficiency of the datacenter. The Columbia team will develop a solution that allows for dynamic resource re-allocation using unified photonic interconnects and a network fabric architecture that untangles computing and memory resources and allows bandwidth to be steered to appropriate areas of the network. The design addresses the stresses placed on systems by real-time communication-intensive applications. By precisely steering bandwidth and workload, idling is reduced and only the required amount of computation power, memory, capacity, and interconnectivity bandwidth are made available over the needed time period

Program: 
Project Term: 
07/16/2010 to 01/15/2014
Project Status: 
ALUMNI
Project State: 
New York
Technical Categories: 
Columbia University is developing a process to pull CO2 out of the exhaust gas of coal-fired power plants and turn it into a solid that can be easily and safely transported, stored above ground, or integrated into value-added products (e.g. paper filler, plastic filler, construction materials, etc.). In nature, the reaction of CO2 with various minerals over long periods of time will yield a solid carbonate--this process is known as carbon mineralization. The use of carbon mineralization as a CO2 capture and storage method is limited by the speeds at which these minerals can be dissolved and CO2 can be hydrated. To facilitate this, Columbia University is using a unique process and a combination of chemical catalysts which increase the mineral dissolution rate, and the enzymatic catalyst carbonic anhydrase which speeds up the hydration of CO2.
Program: 
Project Term: 
09/09/2019 to 09/08/2022
Project Status: 
ACTIVE
Project State: 
Wisconsin
Technical Categories: 
CompRex aims to transform heat exchange technology for high temperature (>800°C or 1472°F) and high pressure (80 bar or 1160 psi) applications through the use of advanced metal and ceramic composite material, development of a new simplified manufacturing approach, and optimization of heat exchanger design based on the new material and manufacturing process. This solution could not only satisfy the performance requirements of next generation power cycles but also significantly lower costs of production and scale-up by as much as 40% compared with existing state-of-the-art heat exchangers. The same manufacturing approach can be applied to different materials to produce various devices such as pumps and reactors. This versatility could expand the technology's significant performance and cost advantages and disruptive potential in a broad array of applications, including transportation, aerospace, and oil/gas/petrochemicals.
Cornell University
Program: 
Project Term: 
08/01/2015 to 10/16/2017
Project Status: 
ALUMNI
Project State: 
New York
Technical Categories: 

Cornell University will develop an innovative, high-efficiency, gallium nitride (GaN) power switch. Cornell's design is significantly smaller and operates at much higher performance levels than conventional silicon power switches, making it ideal for use in a variety of power electronics applications. Cornell will also reuse expensive GaN materials and utilize conventional low-cost production methods to keep costs down.

Program: 
Project Term: 
02/01/2013 to 05/01/2014
Project Status: 
ALUMNI
Project State: 
New York
Technical Categories: 

Cornell University is developing a new photobioreactor that is more efficient than conventional bioreactors at producing algae-based fuels. Traditional photobioreactors suffer from several limitations, particularly poor light distribution, inefficient fuel extraction, and the consumption of large amounts of water and energy. Cornell's bioreactor is compact, making it more economical to grow engineered algae and collect the fuel the algae produces. Cornell's bioreactor also delivers sunlight efficiently through low-cost, plastic, light-guiding sheets. By distributing optimal amounts of sunlight, Cornell's design would increase efficiency and decrease water use compared to conventional algae reactors.

Program: 
Project Term: 
04/27/2015 to 08/15/2018
Project Status: 
ALUMNI
Project State: 
New York
Technical Categories: 

Cornell University will develop thermoregulatory apparel that enables the expansion of the comfortable temperature range in buildings by more than 4°F in both heating and cooling seasons. Cornell's thermoregulatory apparel integrates advanced textile technologies and state-of-the-art wearable electronics into a functional apparel design without compromising comfort, wearability, washability, appearance, or safety. The thermoregulatory clothing system senses the wearer's skin temperature and activates a heated or cooled airflow around the individual, reducing the energy required to heat or cool the building itself by satisfying the comfort requirements of the individual.

Program: 
Project Term: 
08/17/2016 to 08/16/2017
Project Status: 
ALUMNI
Project State: 
New York
Technical Categories: 

Cornell University will develop a new type of rechargeable lithium metal battery that provides superior performance over existing lithium-ion batteries. The anode, or negative side of a lithium-ion battery, is usually composed of a carbon-based material. In lithium metal batteries, the anode is made of metallic lithium. While using metallic lithium could result in double the storage capacity, lithium metal batteries have unreliable performance, safety issues, and premature cell failure. There are two major causes for this performance degradation. First, side reactions can occur between the lithium metal and the liquid or solid electrolyte placed between the positive and negative electrodes. Second, when recharged, branchlike metal fibers called dendrites can grow on the negative electrode. These dendrites can grow to span the space between the negative and positive electrodes, causing short-circuiting. To overcome these challenges, Cornell proposes research to pair a variety of cathodes with a lithium metal anode. The work builds upon recent theoretical and experimental discoveries by the team, which show that a class of structured electrolytes can provide multiple mechanisms for stabilizing lithium metal anodes and suppress dendrite growth. The team will also develop structured electrolyte coatings that provide barriers to oxygen and moisture, but do not impede lithium-ion transport across the electrolyte/electrode interface. Such coatings will suppress the unwelcome lithium metal/electrolyte reactions and will also enable manufacturing of lithium metal batteries under standard dry room conditions. The structures developed could also be used in batteries based on other metals, such as sodium and aluminum that are more abundant and less expensive than lithium, but also affected by dendrite formation.

Program: 
Project Term: 
02/08/2012 to 08/07/2015
Project Status: 
ALUMNI
Project State: 
New York
Technical Categories: 
Cornell University is creating a new software platform for grid operators called GridControl that will utilize cloud computing to more efficiently control the grid. In a cloud computing system, there are minimal hardware and software demands on users. The user can tap into a network of computers that is housed elsewhere (the cloud) and the network runs computer applications for the user. The user only needs interface software to access all of the cloud's data resources, which can be as simple as a web browser. Cloud computing can reduce costs, facilitate innovation through sharing, empower users, and improve the overall reliability of a dispersed system. Cornell's GridControl will focus on 4 elements: delivering the state of the grid to users quickly and reliably; building networked, scalable grid-control software; tailoring services to emerging smart grid uses; and simulating smart grid behavior under various conditions.
Program: 
Project Term: 
04/26/2018 to 10/25/2020
Project Status: 
ACTIVE
Project State: 
New York
Technical Categories: 

Cornell University will develop an occupant monitoring system to enable more efficient control of HVAC systems in commercial buildings. The system is based on a combination of "active" radio frequency identification (RFID) readers and "passive" tags. Instead of requiring occupants to wear tags, the tags, as coordinated landmarks, will be distributed around a commercial area to enable an accurate occupancy count. When occupants, stationary or moving, are present among the RFID reader and multiple tags, their interference on the backscattering paths can be exploited to gain insights on the room population. The distributed tags will operate without the need for a power source. The system will employ efficient biomechanical models and inverse imaging algorithms to estimate the size, posture, and motion of the collected geometry and distinguish people from furniture and pets. Occupancy data is then sent to the building control system to manage the heating, cooling and air flow in order to maximize building energy efficiency while providing optimal human comfort.

Program: 
Project Term: 
01/15/2014 to 06/13/2014
Project Status: 
CANCELLED
Project State: 
Illinois
Technical Categories: 
Coskata is engineering methanol fermentation into an anaerobic microorganism to enable a low-cost biological approach for liquid fuel production. Currently, the most well-known processes available to convert methane into fuel are expensive and energy-intensive. Coskata is constructing strains of the anaerobic bacteria to efficiently and cost-effectively convert activated methane to butanol, an alcohol that can be used directly as part of a fuel blend. Coskata's process involves molecular genetics to introduce and control specific genes, and to inactivate undesired pathways, together with fermentation optimization of constructed strains. Further, the team will work to increase the tolerance of these strains to high concentrations of butanol, an essential element of the technology.
Program: 
Project Term: 
08/13/2019 to 02/12/2022
Project Status: 
ACTIVE
Project State: 
New Hampshire
Technical Categories: 
Creare, in partnership with IMBY Energy, is developing a mass-manufacturable, recuperated, closed-loop Brayton-cycle microturbine that will provide 5 kW of electrical power for residential and commercial buildings. The waste heat from the device can be harvested for heating. Technical innovations in the system that are anticipated to enable high efficiency at an attractive cost include a diffusion bonded foil recuperator, a turbomachine with specialized hydrodynamic gas bearings, a binary working fluid mixture and flameless combustion.
Program: 
Project Term: 
09/01/2010 to 12/31/2014
Project Status: 
ALUMNI
Project State: 
North Carolina
Technical Categories: 
Cree is developing silicon carbide (SiC) power transistors that are 50% more energy efficient than traditional transistors. Transistors act like a switch, controlling the electrical energy that flows through an electrical circuit. Most power transistors today use silicon semiconductors to conduct electricity. However, transistors with SiC semiconductors operate at much higher temperatures, as well as higher voltage and power levels than their silicon counterparts. SiC-based transistors are also smaller and require less cooling than those made with traditional silicon power technology. Cree's SiC transistors will enable electrical circuits to handle higher power levels more efficiently, and they will result in much smaller and lighter electrical devices and power converters. Cree, an established leader in SiC technology, has already released a commercially available SiC transistor that can operate at up to 1,200 volts. The company has also demonstrated a utility-scale SiC transistor that operates at up to 15,000 volts.
Program: 
Project Term: 
01/25/2012 to 07/31/2017
Project Status: 
ALUMNI
Project State: 
North Carolina
Technical Categories: 
Cree is developing a compact, lightweight power conversion device that is capable of taking utility-scale solar power and outputting it directly into the electric utility grid at distribution voltage levels--eliminating the need for large transformers. Transformers "step up" the voltage of the power that is generated by a solar power system so it can be efficiently transported through transmission lines and eventually "stepped down" to usable voltages before it enters homes and businesses. Power companies step up the voltage because less electricity is lost along transmission lines when the voltage is high and current is low. Cree's new power conversion devices will eliminate these heavy transformers and connect a utility-scale solar power system directly to the grid. Cree's modular devices are designed to ensure reliability--if one device fails it can be bypassed and the system can continue to run.
Program: 
Project Term: 
03/14/2018 to 03/13/2021
Project Status: 
ACTIVE
Project State: 
Arkansas
Technical Categories: 

Cree Fayetteville (operating as Wolfspeed, A Cree Company) will team with Ford Motor Company and the University of Michigan-Dearborn to build a power converter for DC fast chargers for electric vehicles using a solid-state transformer based on silicon carbide. The team will construct a single-phase 500 kW building block for a DC fast charger that is at least four times the power density of todays installed units. This device would offer significant improvements in efficiency (greater than 60% less power losses), size/weight (greater than 75% smaller size, 85% less weight), and cost (40% lower materials costs) over the state-of-the-art. Using this system, an electric vehicle (100 kWh) will deliver long driving range with 6 mins of recharge. The compact size also reduces the footprint and structural costs in high-cost real estate in areas with high-population. The teaming of an end user (Ford) directly with the disruptive technology provider (Cree Fayetteville) may accelerate the deployment of fast charge capability for electric vehicles.

Program: 
Project Term: 
02/03/2017 to 02/02/2018
Project Status: 
ALUMNI
Project State: 
Arkansas
Technical Categories: 

Cree Fayetteville will develop high voltage (10kV), high energy density (30 J/cm3), high temperature (150 °C+) capacitors utilizing chemical vapor deposition (CVD) diamond capable of powering the next generation of high-performance power electronics systems. CVD diamond is a superior material for capacitors due to its strong electrical, mechanical, and materials qualities that are inherently stable over varying temperatures. It also has similar qualities of single crystal diamond without the high cost. Commercial CVD diamond deposition will be utilized to prove the feasibility of the technology with consistent, low cost, high-resistivity diamond films. The CVD diamond will be used as an optimal dielectric for today's demanding power electronics applications. Most power electronics systems require large capacitors to filter switching noise and provide sufficient energy to loads during transient periods. But present-day film and ceramic capacitor technologies are quickly becoming obsolete as the switching frequency and operating temperature of power electronic systems continue to increase. Using CVD diamond for this purpose may provide a capacitor technology that does not experience lifetime-limiting overheating, at both low frequency (high energy) and high frequency (low equivalent series resistance) conditions, and with reasonable size and cost. In conjunction with a robust electrode metallurgy and proven high-temperature packaging techniques, energy densities in excess of 80 J/cm3 have been modeled; the proposed specification of 30 J/cm3 will be a drastic improvement over current technologies. The team's effort will primarily focus on the development and characterization of multi-layer CVD diamond capacitor design, packaging, and fabrication techniques, resulting in proof of concept prototypes to demonstrate the technology feasibility.

Program: 
Project Term: 
07/01/2019 to 06/30/2021
Project Status: 
ACTIVE
Project State: 
Washington
Technical Categories: 
CTFusion is developing an early-stage approach to a commercially viable fusion power plant. The company will pursue higher performance in a compact fusion configuration called a spheromak through targeted upgrades of an existing plasma system. The project aims to demonstrate the required physical parameters, engineering performance, and scalability of the team's fusion concept toward an eventual electricity-producing, economical fusion power plant. CTFusion plans to 1) provide an integrated demonstration of its novel plasma sustainment method called imposed-dynamo current drive (IDCD) and 2) confirm the scalability of spheromaks sustained with IDCD toward eventual power plant conditions. Fusion energy has the potential to be a game-changing energy source that is plentiful, safe, and environmentally friendly, producing no harmful emissions. It could work together with renewable energy technologies to provide an economic, clean, and secure energy solution.
Cummins Corporate Research & Technology
Program: 
Project Term: 
02/09/2016 to 08/08/2018
Project Status: 
ALUMNI
Project State: 
Indiana
Technical Categories: 
Cummins Corporate Research & Technology will develop an advanced high efficiency natural gas-fueled internal combustion engine for high-power distributed electricity generation. The team is seeking to achieve 55% brake thermal efficiency while maintaining low exhaust emissions. The enabling technology is wet compression, where fine droplets of water are sprayed directly into the engine cylinders, causing the charge temperature to drop and thereby prevent the onset of damaging engine knock at high compression ratios. Since it takes less energy to compress cooler air, the savings from reduced compression work can be passed on to increase the net engine output. Wet compression is a transformative technology that dramatically improves engine efficiency while still allowing for conventional engine manufacturing methods at existing facilities.
Program: 
Project Term: 
10/01/2010 to 02/29/2012
Project Status: 
ALUMNI
Project State: 
Florida
Technical Categories: 
Dais Analytic Corporation is developing a product called NanoAir which dehumidifies the air entering a building to make air conditioning more energy efficient. The system uses a polymer membrane that allows moisture but not air to pass through it. A vacuum behind the membrane pulls water vapor from the air, and a second set of membranes releases the water vapor outside. The membrane's high selectivity translates into reduced energy consumption for dehumidification. Dais' design goals for NanoAir are the use of proprietary materials and processes and industry-standard installation techniques. NanoAir is also complementary to many other energy saving strategies, including energy recovery. Dais received a separate award of up to $800,000 from the Department of the Navy to help decrease military fuel use.
Program: 
Project Term: 
01/01/2012 to 03/30/2013
Project Status: 
ALUMNI
Project State: 
New Hampshire
Technical Categories: 

Dartmouth College is developing specialized alloys with magnetic properties superior to the rare earths used in today's best magnets. EVs and renewable power generators typically use rare earths to turn the axles in their electric motors due to the magnetic strength of these minerals. However, rare earths are difficult and expensive to refine. Dartmouth will swap rare earths for a manganese-aluminum alloy that could demonstrate better performance and cost significantly less. The ultimate goal of this project is to develop an easily scalable process that enables the widespread use of low-cost and abundant materials for the magnets used in EVs and renewable power generators.

Program: 
Project Term: 
02/01/2010 to 12/31/2013
Project Status: 
ALUMNI
Project State: 
Michigan
Technical Categories: 
Delphi Automotive Systems is developing power converters that are smaller and more energy efficient, reliable, and cost-effective than current power converters. Power converters rely on power transistors which act like a very precisely controlled on-off switch, controlling the electrical energy flowing through an electrical circuit. Most power transistors today use silicon (Si) semiconductors. However, Delphi is using semiconductors made with a thin layer of gallium-nitride (GaN) applied on top of the more conventional Si material. The GaN layer increases the energy efficiency of the power transistor and also enables the transistor to operate at much higher temperatures, voltages, and power-density levels compared to its Si counterpart. Delphi is packaging these high-performance GaN semiconductors with advanced electrical connections and a cooling system that extracts waste heat from both sides of the device to further increase the device's efficiency and allow more electrical current to flow through it. When combined with other electronic components on a circuit board, Delphi's GaN power transistor package will help improve the overall performance and cost-effectiveness of HEVs and EVs.
Program: 
Project Term: 
08/15/2016 to 08/14/2019
Project Status: 
ALUMNI
Project State: 
Massachusetts
Technical Categories: 

DNV GL together with its partners, Geli and Group NIRE, will develop an Internet of Energy (IoEn) platform for the automated scheduling, aggregation, dispatch, and performance validation of network optimized DERs and controllable loads. The IoEn platform will simultaneously manage both system-level regulation and distribution-level support functions to facilitate large-scale integration of distributed generation onto the grid. The IoEn will demonstrate a novel and scalable approach for the fast registration and automated dispatch of DERs by combining DNV GL's power system simulation tools and independent third-party validation with Geli's networking, control, and market balancing software. The platform will demonstrate the ability of customer-sited DERs to provide grid frequency regulation and distribution reliability functions with minimal impact to their local behind-the-meter demand management applications. The IoEn will be demonstrated and tested at Group NIRE's utility-connected microgrid test facility in Lubbock, Texas, where it will be integrated with local utility monitoring, control and data acquisition systems. By increasing the number of local devices able to connect and contribute to the IoEn, this project aims to increase renewables penetration above 50% while maintaining required levels of grid performance.

Det Norske Veritas (DNV GL)
Program: 
Project Term: 
04/27/2015 to 10/30/2019
Project Status: 
ALUMNI
Project State: 
Texas
Technical Categories: 
Det Norske Veritas (DNV GL) and Group NIRE will provide a unique combination of third-party testing facilities, testing and analysis methodologies, and expert oversight to the evaluation of ARPA-E-funded energy storage systems. The project will leverage DNV GL's deep expertise in economic analysis of energy storage technologies, and will implement economically optimized duty cycles into the testing and validation protocol. DNV GL plans to test ARPA-E storage technologies at its state-of-the-art battery testing facility in partnership with the New York Battery and Energy Storage Technology Consortium. Those batteries that pass the rigorous evaluation process will be adapted for testing under real world conditions on Group NIRE's multi-megawatt, wind-integrated microgrid in Texas. Testing will show how well the ARPA-E storage technologies can serve critical applications and will assist ARPA-E-funded battery developers in identifying any issues with performance and durability. This testing will also deliver performance data that buyers of grid storage need, enabling informed choices about commercial adoption of grid storage technologies.
Det Norske Veritas (DNV KEMA)
Program: 
Project Term: 
10/01/2012 to 04/01/2015
Project Status: 
ALUMNI
Project State: 
Texas

Det Norske Veritas (DNV KEMA) is testing a new gas monitoring system developed by NexTech Materials to provide early warning signals that a battery is operating under stressful conditions and at risk of premature failure. As batteries degrade, they emit low level quantities of gas that can be measured over the course of a battery's life-time. DNV KEMA is working with NexTech to develop technology to accurately measure these gas emissions. By taking accurate stock of gas emissions within the battery pack, the monitoring method could help battery management systems predict when a battery is likely to fail. Advanced prediction models could work alongside more traditional models to optimize the performance of electrical energy storage systems going forward. In the final phase of the project, DNV KEMA will build a demonstration in a community energy storage system with Beckett Energy Systems.

Program: 
Project Term: 
02/01/2016 to 01/31/2019
Project Status: 
ALUMNI
Project State: 
Florida
Technical Categories: 

The team led by Dioxide Materials will develop an alkaline water electrolyzer for an improved power-to-gas system. The team's electrochemical cells are composed of an anode, a cathode, and a membrane that allows anions to pass through, while being electrically insulating. High-conductivity anion exchange membranes are rare and often do not have the chemical or mechanical stability to withstand H2 production at elevated pressures. Therefore, the project is focused on developing an anion exchange membrane that is low-cost, is manufacturable in a scaleable process, and has sufficient conductivity, chemical stability, and mechanical strength. Moreover, by operating at alkaline instead of acidic conditions, the electrochemical cells do not need to use expensive precious metal catalysts, which most systems require to prevent corrosion. Dioxide Materials estimates that operating under alkaline conditions could lead to a 10x lower electrolyzer stack cost due to higher current densities and lower material costs (i.e. non-precious metals). The system will be compatible with intermittent energy sources because it can operate at lower temperatures than competiting technologies, thus allowing startup times on the order of seconds.

Program: 
Project Term: 
02/01/2013 to 03/06/2017
Project Status: 
ALUMNI
Project State: 
Florida
Technical Categories: 

Dioxide Materials is developing technology to produce carbon monoxide, or "synthesis gas" electrochemically from CO2 emitted by power plants. Synthesis gas can be used as a feedstock for the production of industrial chemicals and liquid fuels. The current state-of-the-art process for capturing and removing CO2 from the flue gas of power plants is expensive and energy intensive, and therefore faces significant hurdles towards widespread implementation. The technologies being developed by Dioxide Materials aim to convert CO2 into something useful in an economical and practical way. The technology has the potential to create an entirely new industry where waste CO2--rather than oil--is used to produce gasoline, diesel fuel, jet fuel, and industrial chemicals.

Donald Danforth Plant Science Center
Program: 
Project Term: 
01/01/2012 to 12/31/2016
Project Status: 
ALUMNI
Project State: 
Missouri
Technical Categories: 
The Donald Danforth Plant Science Center will optimize light utilization in Camelina, a drought-resistant, cold-tolerant oilseed crop. The team is modifying how Camelina collects sunlight, engineering its topmost leaves to be lighter in color so sunlight can more easily reflect onto lower parts of the plant. A more uniform distribution of light would improve the efficiency of photosynthesis. Combined with other strategies to produce more oil in the seed, Camelina would yield more oil per plant. The team is also working to allow Camelina to absorb carbon dioxide (CO2) more efficiently, providing more carbon input for oil production. The goal is to improve light utilization and oil production to the point where Camelina produces enough fuel precursors per acre to compete with other fuels.
Donald Danforth Plant Science Center
Program: 
Project Term: 
09/15/2015 to 06/30/2020
Project Status: 
ACTIVE
Project State: 
Missouri
Technical Categories: 

The Donald Danforth Plant Science Center, in collaboration with partners from seven institutions, proposes an integrated open-sourced phenotyping system for energy sorghum. Phenotyping is the assessment of observable plant traits, and is critical for breeding improvements. The team will develop a central repository for high quality phenotyping datasets, and make this resource available to other TERRA project groups and the wider community to stimulate further innovations. The team will collect data with their complete system that will include a number of components. First, the team will install, operate, and maintain a reference phenotyping field system that employs a bridge-like overhead structure with a moveable platform supporting sensing equipment, called the Scanalyzer, at the Maricopa Agricultural Center (MAC) at the University of Arizona. The Scanalyzer's advanced sensors will be used for automated high-throughput phenotyping to gather data from the energy sorghum in the field. Second, the project will combine field- and controlled-environment phenotyping. The controlled-environment facilities allow the team to more precisely manipulate environmental conditions and resolve complex dynamic interactions observed in the field. Third, plant and environment data gathered will be used to create computational solutions and predictive algorithms to improve the ability to predict phenotypes; increasing the ability to identify traits for improved biomass yield earlier in a plant's development. Collected data will also be used in the fourth component of the project, advancing our understanding of phenotype-to-genotype trait associations, determining which genes control observable traits in the sorghum. Some traits are largely determined by genes and others are largely determined by environmental factors; work in this project will help elucidate the differences. All of these components generate an incredible amount of data. An "Open Data" policy is central to the philosophy of the Danforth project. To ensure that this data is useful, the team will convene a standards committee selected in collaboration with the TERRA program to standardize phenotyping efforts between institutions. This sharing of standards, data, and open-source code will reduce redundancy, lower costs for researchers, allow for long-term curation, and unlock potential new innovations from entrepreneurs outside the TERRA community.

Program: 
Project Term: 
09/24/2019 to 12/23/2021
Project Status: 
ACTIVE
Project State: 
Missouri
Technical Categories: 
In the last decade, big data has enabled high-yield production of bioenergy crops. The drawback in agricultural systems data is that researchers are grappling with large, complex, multidimensional datasets comprised of thousands of data layers captured weekly or daily in dynamic outdoor environments. Converting all of these measurements into knowledge and actionable outcomes that keeps up with farmer and researcher demand is difficult. Tools that can automatically detect patterns in this data are needed to guide agricultural researchers to better inform experimental design and data analysis.
Program: 
Project Term: 
07/15/2019 to 07/14/2021
Project Status: 
ACTIVE
Project State: 
Pennsylvania

Drexel University is proposing a solid-state MV circuit breaker based on silicon carbide devices, a resonant topology, and capacitive wireless power transfer that aims to significantly improve breaker performance for the MVDC ecosystem. The project combines innovations in using an active resonant circuit to realize zero-current switching, wireless capacitive coupling between the conduction and breaker branches to avoid direct metal-to-metal contact for rapid response speed, and wireless powering to drive the MV switches for improved system reliability.

Program: 
Project Term: 
05/14/2015 to 11/13/2019
Project Status: 
ALUMNI
Project State: 
North Carolina
Technical Categories: 

Duke University, in conjunction with its partners, will build a coded aperture miniature mass spectrometer environmental sensor (CAMMS-ES) for use in a methane monitoring system. The team will also develop search, location, and characterization algorithms. Duke will apply its recent innovations in mass spectrometers to increase the throughput of the spectrometer, providing continuous sampling without diminishing its resolution by integrating spatially coded apertures and corresponding reconstruction algorithms. The coded aperture will also provide advanced specificity and sensitivity for methane detection and other volatile organic compounds (VOCs) associated with natural gas production. Duke's innovations could provide low-cost, advanced sensors to localize and characterize methane and VOC emissions, helping to accelerate detection and mitigation of methane and VOC emissions at natural gas sites.

Program: 
Project Term: 
06/06/2018 to 06/05/2020
Project Status: 
ACTIVE
Project State: 
North Carolina
Technical Categories: 

Duke University will develop a residential sensor system that uses a dynamic meta-surface radar antenna design to determine occupancy in residential buildings. Traditional line-of-sight movement sensors suffer from high error rates. To increase accuracy, the Duke team will develop a sensor that monitors electromagnetic waveforms that are scattered both directly and indirectly off a person, eliminating the need for a direct line-of-sight between the sensor and the person. The sensor hardware continuously generates distinct microwave patterns to probe all corners of the house. Once a person enters a room, their motion changes the scattering statistics of the environment, which is used to establish real-time room occupancy. These characteristics are then analyzed using machine-learning techniques to establish human presence. The radar antenna can quickly sample an area and this information can be used to distinguish humans with the sensitivity to detect even stationary human's micro movements such as breathing. Further, the system operates at microwave frequencies, ensuring minimal concern for human safety. The proposed sensor does not require an internet connection or communication links, ensuring minimal security and privacy concerns. If successful, the system promises detection of occupants and near-zero false negative rate without any complex user interactions.

Program: 
Project Term: 
02/01/2010 to 03/31/2016
Project Status: 
CANCELLED
Project State: 
Missouri
Technical Categories: 

EaglePicher Technologies is developing a sodium-beta alumina (Na-Beta) battery for grid-scale energy storage. High-temperature Na-Beta batteries are a promising grid-scale energy storage technology, but existing approaches are expensive and unreliable. EaglePicher has modified the shape of the traditional, tubular-shaped Na-Beta battery. It is using an inexpensive stacked design to improve performance at lower temperatures, leading to a less expensive overall storage technology. The new design greatly simplifies the manufacturing process for beta alumina membranes (a key enabling technology), providing a subsequent pathway to the production of scalable, modular batteries at half the cost of the existing tubular designs.

Eaton Corporation
Program: 
Project Term: 
09/01/2016 to 08/31/2020
Project Status: 
CANCELLED
Project State: 
Ohio
Technical Categories: 

Eaton will develop and validate a disruptive cloud-computing-based technology aimed at providing agile and robust synthetic regulating reserve services to the power grid. This approach separates the decision-making of synthetic regulating reserve services into two-levels to significantly reduce the computational complexity, thereby enabling large-scale coordinated control of a vast number of DERs and flexible load. The system-operator level estimates and predicts reserve capacity of the distribution network and decides on the appropriate economic incentives for DERs to participate in future services. At the local level, an energy node comprised of a cluster of DERs and flexible loads will automatically decide its own reserve services strategy that takes into account short-term net load and economic incentives. By splitting these decisions between the two levels, the solution does not require extensive communication or negotiation between the local DERs and the system operators in the cloud.

Program: 
Project Term: 
01/31/2018 to 01/30/2021
Project Status: 
ACTIVE
Project State: 
Ohio
Technical Categories: 

Eaton will develop and validate a wireless-power-based computer server supply that enables distribution of medium voltage (AC or DC) throughout a datacenter and converts it to the 48V DC used by computer servers. Datacenters require multiple voltage conversions steps, reducing the efficiency of power distribution from the grid to the server. The converter will employ commercially available wide-bandgap power devices for both the medium-voltage transmitter circuit and the low-voltage receiver circuit, respectively. The heart of the medium voltage supply is the wireless power transfer transformer, which will eliminate the multiple conversion stages present at datacenter locations all while providing operators touch-safe isolation from the medium input voltage side. If successful, the technology can reduce U.S. datacenter energy consumption and operations costs. It will eliminate the need of some transformers and reduce copper use in conductors providing a significant cost and space savings when medium voltage distribution is used.

Program: 
Project Term: 
01/01/2013 to 03/31/2016
Project Status: 
ALUMNI
Project State: 
Ohio

Eaton is developing advanced battery and vehicle systems models that will enable fast, accurate estimation of battery health and remaining life. The batteries used in hybrid vehicles are highly complex and require advanced management systems to maximize their performance. Eaton's battery models will be coupled with hybrid powertrain control and power management systems of the vehicle enabling a broader, more comprehensive vehicle management system for better optimization of battery life and fuel economy. Their design would reduce the sticker price of commercial hybrid vehicles, making them cost-competitive with non-hybrid vehicles.

Program: 
Project Term: 
01/01/2013 to 12/31/2015
Project Status: 
ALUMNI
Project State: 
Ohio
Technical Categories: 
Eaton is developing an at-home natural gas refueling system that relies on a liquid piston to compress natural gas. A traditional compressor uses an electric motor to rotate a crankshaft, which is tied to several metal pistons that pump to compress gas. Traditional compressor systems can be inefficient and their complex components make them expensive to manufacture, difficult to maintain, and short-lived. Eaton's system replaces traditional pistons with a liquid that comes into direct contact with the natural gas without the need for the costly high-pressure piston seals that are used in conventional gas compression.
Program: 
Project Term: 
09/05/2019 to 09/04/2022
Project Status: 
ACTIVE
Project State: 
Ohio

Eaton will build an ultra-high efficiency, medium voltage direct current (MVDC), electro-mechanical/solid-state hybrid circuit breaker (HCB) that offers both low conduction losses and fast response times. The team will also develop a high-speed actuator/vacuum switch (HSVS) combined with a novel transient commutation current injector (TCCI). This switch will transfer power to a separate solid-state device, interrupting the current in the event of a fault. The design should allow for scaling in voltage and current, enabling a range of circuit breakers across the MV application space.

Program: 
Project Term: 
05/01/2019 to 04/30/2022
Project Status: 
ACTIVE
Project State: 
Ohio
Technical Categories: 

The Echogen Power Systems team will develop an energy storage system that uses a carbon dioxide (CO2) heat pump cycle to convert electrical energy into thermal energy by heating a "reservoir" of low-cost materials such as sand or concrete. During the charging cycle, the reservoir will store the heat that will be converted into electricity on demand in the discharge or generating cycle. To generate power, liquid CO2 will be pumped to a supercritical pressure and brought to a higher temperature using the stored heat from the reservoir. Finally, the supercritical CO2 will be used to expand through a turbine to generate electricity during the discharge cycle.

Eclipse Energy Systems
Program: 
Project Term: 
01/23/2017 to 01/22/2019
Project Status: 
CANCELLED
Project State: 
Florida
Technical Categories: 

Eclipse Energy Systems will further develop its proprietary transparent electrical conductor material (EclipseTEC) for use in low-emissivity (low-e) window films. Transparent, low-emissivity coatings improve building energy efficiency by reducing heat loss through the windows. Over the course of the project, the team will transfer their present technology for depositing EclipseTEC films to scalable manufacturing processes while preserving the desirable optical and low-e properties. Eclipse will partner with one or more companies offering thermal insulation solutions and incorporate EclipseTEC into their panes and/or applied products. The unique combined system will offer significant energy savings over traditional single-pane windows.

Program: 
Project Term: 
03/29/2019 to 03/28/2022
Project Status: 
ACTIVE
Project State: 
New York
Technical Categories: 
Ecolectro is developing alkaline exchange ionomers (AEIs) to enable low-cost fuel cell and electrolyzer technologies. Ecolectro's AEIs will be resilient to the harsh operating conditions present in existing alkaline exchange membrane devices that prevent their widespread adoption in commercial applications. This technology will be simple, cost effective, and well suited to large-scale processing. Further, membrane electrode assemblies (MEAs) featuring Ecolectro's AEIs will demonstrate comparable durability and improved efficiency over existing state-of-the-art proton exchange membranes without the need in platinum group metals.
Electric Power Research Institute (EPRI)
Program: 
Project Term: 
08/19/2015 to 05/18/2019
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
The Electric Power Research Institute (EPRI) and its partners will design, fabricate, and demonstrate an indirect dry-cooling system that features a rotating mesh heat exchanger with encapsulated phase-change materials (PCMs) such as paraffin, which can absorb and reject heat efficiently. The novel system can be used downstream from a water-cooled steam surface condenser to cool water to a temperature near ambient air temperature, eliminating the need for a cooling tower. The team's design capitalizes on the high latent heat of the solid-to-liquid transition in the PCMs to provide an extremely effective way to lower the temperature of hot water exiting the condenser. The encapsulated PCMs are embedded in polymer tubes that form a porous, mesh-like structure. These modules are then mounted on a rotating system that continuously circulates the encapsulated PCMs from the hot water - where they absorb heat - into a dry section where ambient air passes by the encapsulated PCMs, causing the PCMs to solidify and reject heat to the atmosphere. The multidisciplinary team includes leading industry and academic partners that will provide technical and market assistance, and help build and test a 50 kWth prototype to demonstrate the technology's commercial viability.
Electron Energy Corporation (EEC)
Program: 
Project Term: 
04/15/2013 to 02/14/2017
Project Status: 
ALUMNI
Project State: 
Pennsylvania
Technical Categories: 
Electron Energy Corporation (EEC) and its team are developing a new processing technology that could transform how permanent magnets found in today's EV motors and renewable power generators are fabricated. This new process, known as friction consolidation extrusion (FC&E), could produce stronger magnets at a lower cost and with reduced rare earth mineral content. The advantage of FC&E over today's best fabrication processes is that it can be applied to unconsolidated powders as opposed to solid alloys, which can allow magnets to be compacted from much smaller grains of two different types, a process which could double its magnetic energy density. EEC's process could reduce the need for rare earth mineral in permanent magnets by as much 30%.
Program: 
Project Term: 
02/28/2018 to 02/27/2020
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

Empower Semiconductor will develop a new architecture for regulating voltage in integrated circuits (IC) like computer microprocessors. Empower's design will enable faster & more accurate power delivery than today's power management hardware. As transistors continue to shrink, the number of transistors per chip has increased, resulting in increased computing power. Existing Voltage Regulator ICs (VRICs) have not kept pace and deliver excessive (and wasted) power to these advanced digital ICs. The team has proposed a new resonant voltage regulator architecture based on silicon technology that can power digital ICs with 5x improved voltage regulation and 1,000x faster transient response. The increased regulation serves to eliminate excess voltage, which translates to significant energy savings. The dramatic increase in transient response enables dynamic voltage scaling which allows the digital IC to reduce its voltage within a few cycles when its full operation & voltage is not needed, thereby further conserving energy. If successful, these improvements in speed and accuracy translate to up to 50% reduction in energy consumption for a digital IC, while enabling a much smaller form factor and lower costs.

Program: 
Project Term: 
07/16/2018 to 01/15/2021
Project Status: 
ACTIVE
Project State: 
Massachusetts
Technical Categories: 

Endeveo will develop an occupancy sensor system to accurately determine the presence of occupants in residential buildings and enable temperature setbacks to provide energy savings of 30% per year. Their technique uses standard Wi-Fi-equipped devices, such as routers, to monitor an environment using the wireless channel state information (CSI) collected by these devices and occupancy-centric machine learning algorithms to determine occupancy from changes in CSI. The developed algorithms will distinguish between humans and pets, sense presence even when occupants are stationary for extended periods of time, and possess the flexibility to adapt to activities of daily living such as furniture being moved or opening doors. While their sensor hardware components use so-called "Wi-Fi protocols" to wirelessly probe an environment, they do not require nor utilize any internet access, Wi-Fi or otherwise. If successful, the system could offer cost-effective occupancy sensing to homes with and without internet service or broadband access.

Program: 
Project Term: 
01/01/2014 to 09/30/2018
Project Status: 
ALUMNI
Project State: 
New Jersey
Technical Categories: 

Energy Research Company (ERCo) is developing an automated Aluminum Integrated Minimill (AIM) that can produce finished components from mixed metal scrap. Unlike most current approaches, ERCo's AIM can distinguish and accurately sort multiple grades of aluminum scrap for recycling. ERCo's AIM reduces energy consumption in several ways. First, the technology would provide real-time feedback controls to improve the accuracy of the sorting process. The sorted scrap is then melted and cast. Further, ERCo's design replaces the inefficient dryers used in conventional processes with advanced, high-efficiency equipment. ERCo's AIM enables significantly more efficient and less expensive scrap sorting and aluminum recovery for casting.

Energy Storage Systems (ESS)
Program: 
Project Term: 
10/01/2012 to 08/30/2017
Project Status: 
ALUMNI
Project State: 
Oregon
Technical Categories: 
Energy Storage Systems (ESS) is developing a cost-effective, reliable, and environmentally friendly all-iron hybrid flow battery. A flow battery is an easily rechargeable system that stores its electrolyte--the material that provides energy--as liquid in external tanks. Currently, flow batteries account for less than 1% of the grid-scale energy storage market because of their high system costs. The ESS flow battery technology is distinguished by its cost-effective electrolytes, based on earth-abundant iron, and its innovative battery hardware design that dramatically increases power density and enables a smaller and less costly battery. Creating a high-performing and low-cost storage system would enable broad adoption of distributed energy storage systems and help bring more renewable energy technologies--such as wind and solar--onto the grid.
Program: 
Project Term: 
05/01/2013 to 02/17/2014
Project Status: 
ALUMNI
Project State: 
Texas
Technical Categories: 
eNova is developing a gas compressor powered by waste heat from the exhaust of a gas turbine. A conventional gas turbine facility releases the exhaust heat produced during operation into the air--this heat is a waste by-product that can be used to improve power generation system efficiency. eNova's gas compressor converts the exhaust waste heat from the simple cycle gas turbine to compressed air for injection into the turbine, thereby lessening the burden on the turbine's air compressor. This new compressor design is ideal for use with a remote gas turbine--such as that typically used in the natural gas industry to compress pipeline natural gas--with limited options for waste heat recovery and access to high voltage power lines and water.
Program: 
Project Term: 
01/01/2010 to 12/31/2011
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
In a battery, metal ions move between the electrodes through the electrolyte in order to store energy. Envia Systems is developing new silicon-based negative electrode materials for Li-Ion batteries. Using this technology, Envia will be able to produce commercial EV batteries that outperform today's technology by 2-3 times. Many other programs have attempted to make anode materials based on silicon, but have not been able to produce materials that can withstand charge/discharge cycles multiple times. Envia has been able to make this material which can successfully cycle hundreds of times, on a scale that is economically viable. Today, Envia's batteries exhibit world-record energy densities.
Program: 
Project Term: 
02/19/2014 to 03/27/2015
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
EnZinc is developing a low-cost battery using 3D zinc microstructured sponge technology that could dramatically improve the rechargeability of zinc-based EV batteries. As a battery material, zinc is inexpensive and readily available, but presently unsuitable for long-term use in EVs. Current zinc based batteries offer limited cycle life due to the formation of tree-like internal structures (dendrites) that can short out the battery. To address this, EnZinc, in collaboration with the U.S. Naval Research Laboratory, will replace conventional zinc powder-bed anodes with a porous zinc sponge that thwarts formation of structures that lead to battery failure. EnZinc's technology will enable zinc-based batteries that accept high-power charge and discharge as required by EVs.
Program: 
Project Term: 
04/11/2013 to 09/30/2016
Project Status: 
ALUMNI
Project State: 
Kentucky
Technical Categories: 
Evolva is producing terpenes--energy dense molecules that can be used as high-performance aviation fuels--from simple sugars using engineered microbes. These terpenes will provide better performance than existing petroleum-based aviation fuels. Evolva will draw upon their industrial-scale terpene manufacturing experience to produce aviation sesquiterpenes at a low cost and large scale. Going forward, Evolva will validate the performance of its aviation fuels in unmanned aerial vehicles (UAVs), and further engineer its process to utilize biomass feedstocks.
Program: 
Project Term: 
12/01/2009 to 05/31/2012
Project Status: 
ALUMNI
Project State: 
New Jersey
Technical Categories: 

Exelus is developing a method to convert olefins from oil refinery exhaust gas into alkylate, a clean-burning, high-octane component of gasoline. Traditionally, olefins must be separated from exhaust before they can be converted into another source of useful fuel. Exelus' process uses catalysts that convert the olefin to alkylate without first separating it from the exhaust. The ability to turn up to 50% of exhaust directly into gasoline blends could result in an additional 46 million gallons of gasoline in the U.S. each year.

Fairfield Crystal Technology
Program: 
Project Term: 
03/05/2014 to 06/22/2015
Project Status: 
ALUMNI
Project State: 
Connecticut
Technical Categories: 
Fairfield Crystal Technology will develop a new technique to accelerate the growth of gallium nitride (GaN) single-crystal boules. A boule is a large crystal that is cut into wafers and polished to provide a surface, or substrate, suitable for fabricating a semiconductor device. Fairfield Crystal Technology's unique boule-growth technique will rapidly produce superior-quality GaN crystal boules--overcoming the quality and growth-rate barriers typically associated with conventional growth techniques, including the current state-of-the-art hydride vapor phase epitaxy technique, and helping to significantly reduce manufacturing costs.
Program: 
Project Term: 
04/01/2010 to 12/31/2013
Project Status: 
ALUMNI
Project State: 
Massachusetts
Technical Categories: 

FastCAP Systems is improving the performance of an ultracapacitor--a battery-like electronic device that can complement, and possibly even replace, an HEV or EV battery pack. Ultracapacitors have many advantages over conventional batteries, including long lifespans (over 1 million cycles, as compared to 10,000 for conventional batteries) and better durability. Ultracapacitors also charge more quickly than conventional batteries, and they release energy more quickly. However, ultracapacitors have fallen short of batteries in one key metric: energy density--high energy density means more energy storage. FastCAP is redesigning the ultracapacitor's internal structure to increase its energy density. Ultracapacitors traditionally use electrodes made of irregularly shaped, porous carbon. FastCAP's ultracapacitors are made of tiny, aligned carbon nanotubes. The nanotubes provide a regular path for ions moving in and out of the ultracapacitor's electrode, increasing the overall efficiency and energy density of the device.

Program: 
Project Term: 
07/02/2018 to 07/15/2020
Project Status: 
ACTIVE
Project State: 
District Of Columbia
Technical Categories: 

Fearless Fund will lead a MARINER Category 1 project to design and develop a new system to enable large-scale macroalgae "ranching" using remote sensing, imaging, and modeling technologies. The core concept targets monitoring free-floating, low-impact Sargassum seaweed in the Gulf of Mexico for cost-effective biomass harvest. Fearless Fund's cultivation process is designed to mimic naturally occurring seaweed mats found at the surface of the ocean. The concept leverages the free-floating nature of Sargassum, reducing costs from labor, seeding, and harvesting normally associated with seaweed farming. Fearless Fund will investigate the potential to artificially "seed" circular currents found in the Gulf of Mexico with Sargassum cuttings. The team envisions that Sargassum could be ranched within Gulf currents, where it can grow to maturity at a predicted rate. The circular current transports the crop closer to shore at the projected time of harvest, which is calculated based on historical data. Remote sensing technologies will be used to monitor the crop over a three month cultivation season before harvesting the new crop with barges and tug boats after the uninterrupted initial growing period. By improving these methods and leveraging the wealth of data generated from a suite of sensors, the team hopes that industrial-scale farming of macroalgae can be achieved without capital-intensive infrastructure.

Program: 
Project Term: 
08/23/2017 to 08/22/2020
Project Status: 
ACTIVE
Project State: 
California

Feasible will develop a non-invasive, low-cost, ultrasonic diagnostic system that links the electrochemical reactions taking place inside a battery with changes in how sound waves propagate through the battery. This Electrochemical Acoustic Signal Interrogation (EASI) analysis will bridge the gap in battery diagnostics between structural insights and electrical measurements, offering both speed and scalability. The physical processes of a battery that affect performance are nearly impossible to monitor with standard diagnostic methods. EASI can provide insights into the battery development, manufacturing, and management life cycle. This capability is enabled by acoustic analysis, which is a fundamentally new tool in its application to batteries, and will aid cell design and development, improve manufacturing quality and yield thereby decreasing cost, and decrease inefficiencies in battery utilization and system design. During a prior ARPA-E IDEAS award, Princeton University developed the proof of concept for this technology that linked the propagation of sound waves through a battery to the state of the material components within the battery. Now, as Feasible Inc., the team will further the development of their sensing techniques and build a database of acoustic signatures for different battery chemistries, form factors, and use conditions. If successful, this ultrasonic diagnostic system will lead to improved battery quality, safety, and performance of electric vehicle and grid energy storage systems via two avenues: (1) more thorough and efficient cell screening during production, and (2) physically relevant information to better inform battery management strategies.

FloDesign Wind Turbine
Program: 
Project Term: 
02/22/2010 to 03/31/2013
Project Status: 
ALUMNI
Project State: 
Massachusetts
Technical Categories: 

FloDesign's innovative wind turbine, inspired by the design of jet engines, could deliver 300% more power than existing wind turbines of the same rotor diameter by extracting more energy over a larger area. FloDesign's unique shrouded design expands the wind capture area, and the mixing vortex downstream allows more energy to flow through the rotor without stalling the turbine. The unique rotor and shrouded design also provide significant opportunity for mass production and simplified assembly, enabling mid-scale turbines (approximately 100 kW) to produce power at a cost that is comparable to larger-scale conventional turbines.

Program: 
Project Term: 
10/01/2010 to 03/31/2013
Project Status: 
ALUMNI
Project State: 
Arizona
Technical Categories: 

Fluidic Energy is developing a low-cost, rechargeable, high-power module for Zinc-air batteries that will be used to store renewable energy. Zinc-air batteries are traditionally found in small, non-rechargeable devices like hearing aids because they are well-suited to delivering low levels of power for long periods of time. Historically, Zinc-air batteries have not been as useful for applications which require periodic bursts of power, like on the electrical grid. Fluidic hopes to fill this need by combining the high energy, low cost, and long run-time of a Zinc-air battery with new chemistry providing high power, high efficiency, and fast response. The battery module could allow large grid-storage batteries to provide much more power on very short demand--the most costly kind of power for utilities--and with much more versatile performance.

Program: 
Project Term: 
01/01/2013 to 03/31/2016
Project Status: 
ALUMNI
Project State: 
Michigan

Ford Motor Company is developing a commercially viable battery tester with measurement precision that is significantly better than today's best battery testers. Improvements in the predictive ability of battery testers would enable significant reductions in the time and expense involved in electric vehicle technology validation. Unfortunately, the instrumental precision required to reliably predict performance of batteries after thousands of charge and discharge cycles does not exist in today's commercial systems. Ford's design would dramatically improve the precision of electric vehicle battery testing equipment, which would reduce the time and expense required in the research, development, and qualification testing of new automotive and stationary batteries.

Program: 
Project Term: 
09/17/2012 to 03/31/2015
Project Status: 
CANCELLED
Project State: 
Michigan
Technical Categories: 
ARPA-E and Ford Motor Company agreed to mutually conclude this project. Ford is developing an on-board adsorbed natural gas tank system with a high-surface-area framework material that would increase the energy density of compressed natural gas at low pressures. Traditional natural gas tanks attempt to compensate for low-energy-density and limited driving range by storing compressed gas at high pressures, requiring expensive pressure vessels. Ford and their project partners will optimize advanced porous material within a system to reduce the pressure of on-board tanks while delivering the customer expected driving range. This porous material allows more gas to be stored inside a tank by utilizing a surface energy attraction to the natural gas. These materials would be efficiently and cost-effectively integrated into a natural gas vehicle system that will promote and contribute to the widespread use of natural gas vehicles.
Program: 
Project Term: 
07/31/2019 to 01/30/2022
Project Status: 
ACTIVE
Project State: 
Massachusetts
Technical Categories: 

Form Energy will develop a long-duration energy storage system that takes advantage of the low cost and high abundance of sulfur in a water-based solution. Previous MIT research demonstrated that aqueous sulfur flow batteries represent the lowest chemical cost among rechargeable batteries. However, these systems have relatively low efficiency. Conversely, numerous rechargeable battery chemistries with higher efficiency have high chemical costs. The solution requires low chemical cost, high efficiency, and streamlined architecture. The team will pursue several competing strategies and ultimately select a single approach to develop a prototype system. Focus areas include developing anode and cathode formulations, membranes, and physical system designs.

Program: 
Project Term: 
01/15/2010 to 09/30/2013
Project Status: 
ALUMNI
Project State: 
Colorado
Technical Categories: 

Foro Energy is developing a unique capability and hardware system to transmit high power lasers over long distances via fiber optic cables. This laser power is integrated with a mechanical drilling bit to enable rapid and sustained penetration of hard rock formations too costly to drill with mechanical drilling bits alone. The laser energy that is directed at the rock basically softens the rock, allowing the mechanical bit to more easily remove it. Foro Energy's laser-assisted drill bits have the potential to be up to 10 times more economical than conventional hard-rock drilling technologies, making them an effective way to access the U.S. energy resources currently locked under hard rock formations.

Program: 
Project Term: 
08/01/2019 to 07/31/2021
Project Status: 
ACTIVE
Project State: 
Colorado
Technical Categories: 
Foro Energy will develop a high-power laser tool to assist in removing the extremely tough materials constituting aging energy assets in a timely, cost-effective, safe, and environmentally responsible manner. This cutting and melting tool will be capable of transmitting high-power laser light at long distances in a field environment, greatly boosting decommissioning efficiency.
Program: 
Project Term: 
10/01/2014 to 09/30/2017
Project Status: 
CANCELLED
Project State: 
Connecticut
Technical Categories: 
FuelCell Energy will develop an intermediate-temperature fuel cell that will directly convert methane to methanol and other liquid fuels using advanced metal catalysts. Existing fuel cell technologies typically convert chemical energy from hydrogen into electricity during a chemical reaction with oxygen or some other agent. FuelCell Energy's cell would create liquid fuel from natural gas. Their advanced catalysts are optimized to improve the yield and selectivity of methane-to-methanol reactions; this efficiency provides the ability to run a fuel cell on methane instead of hydrogen. In addition, FuelCell Energy will utilize a new reactive spray deposition technique that can be employed to manufacture their fuel cell in a continuous process. The combination of these advanced catalysts and advanced manufacturing techniques will reduce overall system-level costs.
Program: 
Project Term: 
05/22/2017 to 11/21/2020
Project Status: 
ACTIVE
Project State: 
Connecticut
Technical Categories: 

FuelCell Energy will develop an advanced solid oxide fuel cell system capable of generating ammonia from nitrogen and water, and renewable electricity. The unique design will also allow the system to operate in reverse, by converting ammonia and oxygen from air into electricity. A key innovation in this project is the integration of proton-conducting ceramic membranes with new electride catalyst supports to enable an increase in the rate of ammonia production. Combining their catalyst with a calcium-aluminate electride support increases the rate of ammonia formation by reducing coverage of the catalyst surface by hydrogen and allowing the nitrogen to use all of the catalyst area for reactions. The modular nature of this system allows for its deployment closer to the point of use at agricultural and industrial sites, working to both produce ammonia for immediate or delayed use and to use the ammonia to generate electricity after it has been transported to population centers.

Program: 
Project Term: 
08/15/2018 to 11/13/2020
Project Status: 
ACTIVE
Project State: 
Connecticut
Technical Categories: 
FuelCell Energy will develop an adaptive, pressurized solid oxide fuel cell (SOFC) for use in hybrid power systems. Hybridized power generation systems, combining energy efficient SOFCs with a microturbine or internal combustion (IC) engine, offer a path to high efficiency distributed generation from abundant natural gas. Proof-of-concept systems have shown the potential of this hybrid approach, but component optimization is necessary to increase system efficiencies and reduce costs. Existing SOFC stacks are relatively expensive components, and improving their efficiency and robustness would enhance the overall commercial viability of these systems. This team's approach is to focus directly on improving SOFCs with hybrid integration as their end goal. Their adaptive cells will withstand the necessary pressure fluctuations, and the compact stack design aims to make the best use of heat transfer while minimizing leakage losses and maintaining high performance. The team will take a modular approach, building 2-5kW stacks that can be grouped together in a pressurized container. These modules can be added or removed as needed to suit the scale of the hybrid system, enabling a range of power applications. The baseline cell technology will also be modified through advanced materials that extend the useful life of stack and mitigate the harmful effects of contaminants on fuel cell performance. If successful, these adaptive, efficient, robust SOFCs could provide a path to greater than 70% efficiency when integrated into a hybrid system.
Gas Technology Institute (GTI)
Program: 
Project Term: 
01/01/2014 to 03/31/2015
Project Status: 
ALUMNI
Project State: 
Illinois
Technical Categories: 
Gas Technology Institute (GTI) is developing a continuously operating cell that produces low-cost aluminum powder using less energy than conventional methods. Conventional aluminum production is done by pumping huge electrical currents into a vat of molten aluminum dissolved in mineral salts at nearly 2000 degrees Fahrenheit. GTI's technology occurs near room temperature using reusable solvents to dissolve the ore. Because GTI's design relies on chemical dissolution rather than heat, its cells can operate at room temperature, meaning it does not suffer from wasteful thermal energy losses associated with conventional systems. GTI's electrochemical cell could also make aluminum production significantly less expensive by using less costly, domestically available ore with no drop in quality.
Gas Technology Institute (GTI)
Program: 
Project Term: 
01/01/2013 to 09/30/2015
Project Status: 
ALUMNI
Project State: 
Illinois
Technical Categories: 
Gas Technology Institute (GTI) is developing a new process to convert natural gas or methane-containing gas into methanol and hydrogen for liquid fuel. Methanol serves as the main feedstock for dimethyl ether, which could be used for vehicular fuel. Unfortunately, current methods to produce liquid fuels from natural gas require large and expensive facilities that use significant amounts of energy. GTI's process uses metal oxide catalysts that are continuously regenerated in a reactor, similar to a battery, to convert the methane into methanol. These metal oxide catalysts reduce the energy required during the conversion process. This process operates at room temperature, is more energy efficient, and less capital-intensive than existing methods.
Gas Technology Institute (GTI)
Program: 
Project Term: 
05/13/2014 to 01/31/2018
Project Status: 
ALUMNI
Project State: 
Illinois
Technical Categories: 
Gas Technology Institute (GTI) is developing a hybrid solar converter that focuses sunlight onto solar cells with a reflective backside mirror. These solar cells convert most visible wavelengths of sunlight to electricity while reflecting the unused wavelengths to heat a stream of flowing particles. The particles are used to store the heat for use immediately or at a later time to drive a turbine and produce electricity. GTI's design integrates the parabolic trough mirrors, commonly used in CSP plants, into a dual-mirror system that captures the full solar spectrum while storing heat to dispatch electricity when the sun does not shine. Current solar cell technologies capture limited portions of the solar spectrum to generate electricity that must be used immediately. By using back-reflecting gallium arsenide (GaAs) cells, this hybrid converter is able to generate both electricity from specific solar wavelengths and capture the unused light as heat in the flowing particles. The particle-based heat storage system is a departure from standard fluid-based heat storage approaches and could enable much more efficient and higher energy density heat storage. GTI's converter could be used to provide solar electricity whether or not the sun is shining.
Gas Technology Institute (GTI)
Program: 
Project Term: 
03/01/2016 to 02/28/2018
Project Status: 
ALUMNI
Project State: 
Illinois
Technical Categories: 

The team led by Gas Technology Institute (GTI) will develop a conventional automotive engine as a reactor to convert ethane into ethylene by using a new catalyst and reactor design that could enable record-breaking conversion yields. The technology proposed by GTI would use a reciprocating engine as a variable volume oxidative dehydrogenation (ODH) reactor. This means a conventional engine would be modified with a new valving mechanism that would take advantage of high flow rates and high pressure and temperature regime that already exists in an internal combustion engine. This process requires no energy input, does produce minimal CO2 emissions, and improves yields to about 80% at one third the cost. The ODH reactor engine's relatively small size and high throughput will enable ethylene producers to add ethylene production capacity without the financial risk of building a billion-dollar steam cracking plant. This technology will reduce energy-related emissions and could enable the U.S. plastics industry to increase utilization of low-cost, domestic ethane to produce ethylene for plastics.

Gas Technology Institute (GTI)
Program: 
Project Term: 
06/01/2017 to 11/30/2020
Project Status: 
ACTIVE
Project State: 
Illinois
Technical Categories: 
Gas Technology Institute (GTI) will develop a process for producing dimethyl ether (DME) from renewable electricity, air, and water. DME is a clean-burning fuel that is easily transported as a liquid and can be used as a drop-in fuel in internal combustion engines or directly in DME fuel cells. Ultimately carbon dioxide (CO2) would be captured from sustainable sources, such as biogas production, and fed into a reactor with hydrogen generated from high temperature water splitting. The CO2 and hydrogen react on a bifunctional catalyst to form methanol and a subsequently DME. To improve conversion to DME, GTI will use a novel catalytic membrane reactor with a zeolite membrane. This reactor improves product yield by shifting thermodynamic equilibrium towards product formation and decreases catalyst deactivation and kinetic inhibition due to water formation. The final DME product is separated and the unreacted chemicals are recycled back to the catalytic reactor. Each component of the process is modular, compact, and requires no additional inputs aside from water, CO2, and electricity, while the entire system is designed from the ground up to be compatible with intermittent renewable energy sources.
Program: 
Project Term: 
10/01/2012 to 03/31/2014
Project Status: 
ALUMNI
Project State: 
Illinois
Technical Categories: 
Gas Technology Institute (GTI) will partner with Northwestern University, NuMat Technologies, a Northwestern start-up company, and Westport Fuel Systems to identify materials with the best characteristics for low-pressure natural gas storage. The gas-storing materials, known as metal organic framework (MOF) adsorbents, hold natural gas the way a sponge holds liquids. The project team will further develop their computer modeling and screening technique to support the creation of a low-pressure adsorbent material specifically designed for natural gas vehicles. The team will also validate the materials properties in real-world conditions. Low-pressure gas tanks represent significant potential for lowering not only the cost of NGVs, but also the cost of fueling by reducing the need to compress the gas.
Gas Technology Institute (GTI)
Program: 
Project Term: 
09/07/2016 to 09/30/2017
Project Status: 
ALUMNI
Project State: 
Illinois
Technical Categories: 

Gas Technology Institute (GTI) will develop a sulfur-based methane oxidation process, known as soft oxidation, to convert methane into liquid fuels and chemicals. Current gas-to-liquid technology for converting methane to liquid hydrocarbons requires massive scale to achieve economic production. The large plant size makes this approach unsuitable to address the challenge of distributed methane emissions. Soft oxidation is a method better suited to address this challenge because of its modular nature. It also addresses a major limitation of conventional gas-to-liquid technology: the irreversible conversion of methane and oxygen to carbon dioxide. In this project, GTI will demonstrate and optimize a two-step methane soft oxidation process and develop a fully integrated system that converts methane to liquid hydrocarbons, recovers the valuable liquids and hydrogen gas, and recycles the remaining products. A key difference with traditional oxygen-based approaches is that GTI's method allows for some hydrogen recovery, whereas in oxygen-based approaches the hydrogen must be consumed completely. Soft oxidation has a higher efficiency because of this, and it lacks the need for complex heat integration and recovery methods that require large scale plants. If successful, this new process could provide an economic pathway to significantly reduce methane emissions through on-site conversion.

Gas Technology Institute (GTI)
Program: 
Project Term: 
01/01/2013 to 12/31/2014
Project Status: 
ALUMNI
Project State: 
Illinois
Technical Categories: 
Gas Technology Institute (GTI) is developing a natural gas tank for light-duty vehicles that features a thin, tailored shell containing microscopic valves which open and close on demand to manage pressure within the tank. Traditional natural gas storage tanks are thick and heavy, which makes them expensive to manufacture. GTI's tank design uses unique adsorbent pellets with nano-scale pores surrounded by a coating that functions as valves to help manage the pressure of the gas and facilitate more efficient storage and transportation. GTI's low-pressure tanks would have thinner walls than today's best alternatives, resulting in a lighter, more affordable product with increased storage capacity.
Program: 
Project Term: 
10/01/2012 to 12/31/2014
Project Status: 
CANCELLED
Project State: 
Tennessee

Gayle Technologies is developing a laser-guided, ultrasonic electric vehicle battery inspection system that would help gather precise diagnostic data on battery performance. The batteries used in hybrid vehicles are highly complex, requiring advanced management systems to maximize their performance. Gayle's laser-guided, ultrasonic system would allow for diagnosis of various aspects of the battery system, including inspection for defects during manufacturing and assembly, battery state-of-health, and flaws that develop from mechanical or chemical issues with the battery system during use. Because of its non-invasive nature, relatively low cost, and potential for yielding broad information content, this innovative technology could increase productivity in battery manufacturing and better monitor battery conditions during use or service.

Program: 
Project Term: 
03/13/2019 to 03/12/2021
Project Status: 
ACTIVE
Project State: 
New York
Technical Categories: 
Geegah will develop an inexpensive wireless sensor, using ultrasound from MHz to GHz, that can measure water content, soil chemicals, root growth, and nematode pests (a type of small worm), allowing farmers to improve the output of biofuel crops while reducing water and pesticide use. The reusable device will include a sensor suite and radio interface that can communicate to aboveground farm vehicles. This novel integration of sensing and imaging technologies has the potential to provide a low-cost solution to precision sensor-based digital agriculture.
Program: 
Project Term: 
01/09/2012 to 07/31/2013
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
General Atomics is developing a direct current (DC) circuit breaker that could protect the grid from faults 100 times faster than its alternating current (AC) counterparts. Circuit breakers are critical elements in any electrical system. At the grid level, their main function is to isolate parts of the grid where a fault has occurred--such as a downed power line or a transformer explosion--from the rest of the system. DC circuit breakers must interrupt the system during a fault much faster than AC circuit breakers to prevent possible damage to cables, converters and other grid-level components. General Atomics' high-voltage DC circuit breaker would react in less than 1/1,000th of a second to interrupt current during a fault, preventing potential hazards to people and equipment.
Program: 
Project Term: 
09/01/2010 to 08/28/2013
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
General Atomics is developing a flow battery technology based on chemistry similar to that used in the traditional lead-acid battery found in nearly every car on the road today. Flow batteries store energy in chemicals that are held in tanks outside the battery. When the energy is needed, the chemicals are pumped through the battery. Using the same basic chemistry as a traditional battery but storing its energy outside of the cell allows for the use of very low-cost materials. The goal is to develop a system that is far more durable than today's lead-acid batteries, can be scaled to deliver megawatts of power, and which lowers the cost of energy storage below $100 per kilowatt hour.
Program: 
Project Term: 
09/13/2010 to 04/01/2011
Project Status: 
ALUMNI
Project State: 
Massachusetts
Technical Categories: 
General Compression has developed a transformative, near-isothermal compressed air energy storage system (GCAES) that prevents air from heating up during compression and cooling down during expansion. When integrated with renewable generation, such as a wind farm, intermittent energy can be stored in compressed air in salt caverns or pressurized tanks. When electricity is needed, the process is reversed and the compressed air is expanded to produce electricity. Unlike conventional compressed air energy storage (CAES) projects, no gas is burned to convert the stored high-pressure air back into electricity. The result of this breakthrough is an ultra-efficient, fully shapeable, 100% renewable and carbon-free power product. The GCAES system can provide high quality electricity and ancillary services by effectively integrating renewables onto the grid at a cost that is competitive with gas, coal, and nuclear generation.
Program: 
Project Term: 
04/13/2020 to 04/12/2020
Project Status: 
ACTIVE
Project State: 
Connecticut
Technical Categories: 
GE Global Research and Glosten will design a new FOWT based on the 12 MW (megawatt) Haliade-X rotor and a lightweight three-legged acutated tension-leg platform. Applying a CCD methodology, the team will use advanced control algorithms to operate the turbine and concurrently design the integrated structure of the FOWT. The proposed turbine designs will have the potential to reduce the mass of the system by more than 35% compared with installed FOWT designs.
General Electric (GE) Global Research
Program: 
Project Term: 
05/08/2015 to 08/07/2018
Project Status: 
ALUMNI
Project State: 
Connecticut
Technical Categories: 

General Electric (GE) Global Research will partner with Virginia Tech to design, fabricate, and test a novel, hollow core, microstructured optical fiber for long path-length transmission of infrared radiation at methane absorption wavelengths. GE will drill micrometer-sized side-holes to allow gases to penetrate into the hollow core. The team will use a combination of techniques to quantify and localize the methane in the hollow core. GE's plans to develop fibers that can be designed to fit any natural gas system, providing flexibility to adapt to the needs of a monitoring program in a wide variety of places along the natural gas value chain, including transmission and gathering pipelines. GE anticipates that the fiber detector will be cost competitive with other highly selective methane detectors, and therefore offer innovative capabilities for more cost effective methane monitoring.

Program: 
Project Term: 
07/22/2019 to 01/21/2022
Project Status: 
ACTIVE
Project State: 
Connecticut
Technical Categories: 

The GE-led team will develop a metallic-based, ultra-performance heat exchanger enabled by additive manufacturing technology and capable of operation at 900°C (1652°F) and 250 bar (3626 psi). The team will optimize heat transfer versus thermomechanical load using new micro-trifurcating core structures and manifold designs. The team will leverage a novel, high-temperature capable, crack-resistant nickel superalloy, designed specifically for additive manufacturing. When completed, the heat exchanger could enable increased thermal efficiency of indirect heated power cycles such as supercritical carbon dioxide (sCO2) Brayton power generation, reducing energy consumption and emissions.

General Electric (GE) Global Research
Program: 
Project Term: 
10/01/2010 to 09/30/2013
Project Status: 
ALUMNI
Project State: 
Connecticut
Technical Categories: 

General Electric (GE) Global Research and the University of Pittsburgh are developing a unique CO2 capture process in which a liquid absorbent changes into a solid upon contact with CO2. Once in solid form, the material can be separated and the CO2 can be released for storage by heating. Upon heating, the absorbent returns to its liquid form, where it can be reused to capture more CO2. The approach is more efficient than other solvent-based processes because it avoids the heating of extraneous solvents such as water. This ultimately leads to a lower cost of CO2 capture and will lower the additional cost to produce electricity for coal-fired power plants that retrofit their facilities to include this technology.

General Electric (GE) Global Research
Program: 
Project Term: 
06/10/2016 to 12/09/2019
Project Status: 
ALUMNI
Project State: 
Connecticut
Technical Categories: 
General Electric (GE) Global Research along with its partners will develop a novel distributed flexibility resource (DFR) technology that aggregates responsive flexible loads and DERs to provide synthetic reserve services to the grid while maintaining customer quality-of-service. A key innovation of the project is to develop a forecast tool that will use short-term and real-time weather forecasts along with other data to estimate the reserve potential of aggregate loads and DERs. An optimization framework that will enable aggregation of large numbers of flexible loads and DERs and determine the optimal schedule to bid into the wholesale market will be designed. A scalable control and communication architecture will enable coordination and control of the resources in real-time based on a novel two-tier hierarchical optimal control algorithm.
Program: 
Project Term: 
08/14/2019 to 08/13/2023
Project Status: 
ACTIVE
Project State: 
Connecticut
Technical Categories: 
GE Global Research will develop a device architecture for the world's first high-voltage silicon carbide (SiC) super junction (SJ) field-effect transistors. These devices will provide highly efficient power conversion (such as from direct to alternating current) in medium voltage applications, including renewables like solar and wind power, as well as transportation. The transistors will scale to high voltage while offering up to 10 times lower losses compared to commercial silicon-based transistors available today.
General Electric (GE) Global Research
Program: 
Project Term: 
04/30/2013 to 07/31/2017
Project Status: 
ALUMNI
Project State: 
Connecticut
Technical Categories: 

General Electric (GE) Global Research is developing a new gas tube switch that could significantly improve and lower the cost of utility-scale power conversion. A switch breaks an electrical circuit by interrupting the current or diverting it from one conductor to another. To date, solid state semiconductor switches have completely replaced gas tube switches in utility-scale power converters because they have provided lower cost, higher efficiency, and greater reliability. GE is using new materials and innovative designs to develop tubes that not only operate well in high-power conversion, but also perform better and cost less than non-tube electrical switches. A single gas tube switch could replace many semiconductor switches, resulting in more cost effective high power converters.

General Electric (GE) Global Research
Program: 
Project Term: 
02/24/2012 to 05/31/2014
Project Status: 
ALUMNI
Project State: 
Connecticut
Technical Categories: 
General Electric (GE) Global Research is developing new, low-cost insulation for high-voltage direct current (HVDC) electricity transmission cables. The current material used to insulate HVDC transmission cables is very expensive and can account for as much as 1/3 of the total cost of a high-voltage transmission system. GE is embedding nanomaterials into specialty rubber to create its insulation. Not only are these materials less expensive than those used in conventional HVDC insulation, but also they will help suppress excess charge accumulation. The excess charge left behind on a cable poses a major challenge for high-voltage insulation--if it is not kept to a low level, it could ultimately lead the insulation to fail. GE's low-cost insulation is compatible with existing U.S. cable manufacturing processes, further enhancing its cost effectiveness.
General Electric (GE) Global Research
Program: 
Project Term: 
01/01/2013 to 12/31/2016
Project Status: 
ALUMNI
Project State: 
Connecticut

General Electric (GE) Global Research is developing low-cost, thin-film sensors that enable real-time mapping of temperature and surface pressure for each cell within a battery pack, which could help predict how and when batteries begin to fail. The thermal sensors within today's best battery packs are thick, expensive, and incapable of precisely assessing important factors like temperature and pressure within their cells. In comparison to today's best systems, GE's design would provide temperature and pressure measurements using smaller, more affordable sensors than those used in today's measurement systems. Ultimately, GE's sensors could dramatically improve the thermal mapping and pressure measurement capabilities of battery management systems, allowing for better prediction of potential battery failures.

General Electric (GE) Global Research
Program: 
Project Term: 
05/10/2016 to 11/09/2019
Project Status: 
ALUMNI
Project State: 
Connecticut
Technical Categories: 

The team led by General Electric (GE) Global Research will develop a new high-voltage, solid-state Silicon Carbide (SiC) Field-Effect Transistor (FET) charge-balanced device, also known as a "Superjunction." These devices have become the industry norm in high-voltage Silicon switching devices, because they allow for more efficient switching at higher voltages and frequencies. The team proposes to demonstrate charge balanced SiC devices for the first time. Their approach will offer scaling up to 15kV while reducing losses for power conversion applications by 10x when compared with existing silicon bipolar devices and competing SiC approaches. This will enable highly efficient, medium-voltage, multi-megawatt power conversion for conventional and renewable energy applications. The technology could dramatically reduce energy consumption and emissions for applications such as solar, wind, mining, oil and gas development, and medical devices. If these efficient devices were widely adopted the technology could save enough energy to power 5.9 million homes annually. It can also have a significant impact on medium voltage drives for high-speed motors and transportation applications, including hybrid and electric vehicles. In rail applications, the higher voltage and higher frequencies afforded by SiC devices could reduce the total energy consumption by as much as 30%.

Program: 
Project Term: 
03/24/2020 to 03/23/2022
Project Status: 
ACTIVE
Project State: 
Connecticut
Technical Categories: 
GE Global Research will develop a probabilistic inverse design machine learning (ML) framework, Pro-ML IDeAS, to take performance and requirements as input and provide engineering designs as output. Pro-ML IDeAS will calculate the design explicitly without iteration and overcome the challenges of ill-posed inverse problems. Pro-ML IDeAS will use GE's Bayesian hybrid modeling with multi-fidelity intelligent design and analysis of computer experiments and a novel probabilistic invertible neural network (INN). The proposed framework can be applied to general complex design problems. The designs of interest are turbomachinery components, applicable to not only industrial gas turbines, but also aviation turbine engines, aero derivative engines, wind turbines, and hydro turbines.
General Electric (GE) Global Research
Program: 
Project Term: 
09/01/2015 to 03/02/2017
Project Status: 
ALUMNI
Project State: 
Connecticut
Technical Categories: 
General Electric (GE) Global Research will design, manufacture, and test an absorption heat pump that can be used for supplemental dry cooling at thermoelectric power plants. The team's project features a novel, absorbent-enabled regenerator that doubles the coefficient of performance of conventional absorption heat pumps. The new absorbents demonstrate greater hygroscopic potential, or the ability to prevent evaporation. To remove heat and cool condenser water, these absorbents take in water vapor (refrigerant) and release the water as liquid during desorption without vaporization or boiling. GE's technology will use waste heat from the power plant's flue gas to drive the cooling system, eliminating the need for an additional power source. GE estimates the system will cost half that of conventional absorption heat pumps.
General Electric (GE) Global Research
Program: 
Project Term: 
10/01/2010 to 09/30/2013
Project Status: 
ALUMNI
Project State: 
Connecticut
Technical Categories: 
General Electric (GE) Global Research is using nanomaterials technology to develop advanced magnets that contain fewer rare earth materials than their predecessors. Nanomaterials technology involves manipulating matter at the atomic or molecular scale, which can represent a stumbling block for magnets because it is difficult to create a finely grained magnet at that scale. GE is developing bulk magnets with finely tuned structures using iron-based mixtures that contain 80% less rare earth materials than traditional magnets, which will reduce their overall cost. These magnets will enable further commercialization of HEVs, EVs, and wind turbine generators while enhancing U.S. competitiveness in industries that heavily utilize these alternatives to rare earth minerals.
General Electric (GE) Global Research
Program: 
Project Term: 
01/01/2013 to 04/20/2014
Project Status: 
CANCELLED
Project State: 
Connecticut
Technical Categories: 

General Electric (GE) Global Research is developing a low-cost, at-home natural gas refueling system that reduces fueling time and eliminates compression stages. Traditional compressor-based natural gas refueling systems require removal of water from natural gas through complicated desiccant cycles to avoid damage. GE's design uses a chiller to cool the gas to a temperature below -50°C, which would separate water and other contaminants from the natural gas. This design has very few moving parts, will operate quietly, and will be virtually maintenance-free. This simplified, compressor-free design could allow fast refueling at 10% of the cost of today's systems.

General Electric (GE) Global Research
Program: 
Project Term: 
01/23/2012 to 01/22/2015
Project Status: 
ALUMNI
Project State: 
Connecticut
Technical Categories: 
General Electric (GE) Global Research is developing electricity transmission hardware that could connect distributed renewable energy sources, like wind farms, directly to the grid--eliminating the need to feed the energy generated through intermediate power conversion stations before they enter the grid. GE is using the advanced semiconductor material silicon carbide (SiC) to conduct electricity through its transmission hardware because SiC can operate at higher voltage levels than semiconductors made out of other materials. This high-voltage capability is important because electricity must be converted to high-voltage levels before it can be sent along the grid's network of transmission lines. Power companies do this because less electricity is lost along the lines when the voltage is high.
General Electric (GE) Global Research
Program: 
Project Term: 
01/01/2011 to 07/17/2012
Project Status: 
CANCELLED
Project State: 
Connecticut
Technical Categories: 
Magnetic components are typically the largest components in a power converter. To date, however, researchers haven't found an effective way to reduce their size without negatively impacting their performance. And, reducing the size of the converter's other components isn't usually an option because shrinking them can also diminish the effectiveness of the magnetic components. General Electric (GE) Global Research is developing smaller magnetic components for power converters that maintain high performance levels. The company is building smaller components with magnetic films. These films are created using the condensation of a vaporized form of the magnetic material. It's a purely physical process that involves no chemical reactions, so the film composition is uniform. This process makes it possible to create a millimeter-thick film deposition over a wide surface area fairly quickly, which would save on manufacturing costs. In fact, GE can produce 1-10 millimeter-thick films in hours. The magnetic components that GE is developing for this project could be used in a variety of applications, including solar inverters, electric vehicles, and lighting.
Program: 
Project Term: 
08/01/2014 to 12/31/2018
Project Status: 
ALUMNI
Project State: 
Connecticut
Technical Categories: 

GE is designing and testing components of a turbine system driven by high-temperature, high-pressure carbon dioxide (CO2) to develop a more durable and efficient energy conversion system. Current solar energy system components break down at high temperatures, shortening the system's cycle life. GE's energy storage system stores heat from the sun in molten salt at moderate temperature and uses surplus electricity from the grid to create a phase change heat sink, which helps manage the temperature of the system. Initially, the CO2 remains at a low temperature and low pressure to enable more efficient energy storage. Then, the temperature and pressure of the CO2 is increased and expanded through a turbine to generate dispatchable electricity. The dramatic change in temperature and pressure is enabled by an innovative system design that prevents thermal losses across the turbine and increases its cycle life. This grid-scale energy storage system could be coupled to a hybrid solar converter to deliver solar electricity on demand.

General Electric (GE) Global Research
Program: 
Project Term: 
08/02/2019 to 08/01/2022
Project Status: 
ACTIVE
Project State: 
Connecticut

GE Research will develop a medium voltage direct current (MVDC) circuit breaker using gas discharge tubes (GDTs) with exceptionally fast response time. GDTs switch using no mechanical motion by transitioning the internal gas between its ordinary insulating state and a highly conductive plasma state. The team will develop a new cathode and control grid to reduce power loss during normal operation and meet program performance and efficiency targets. A fast MVDC breaker is an important component in uprating existing AC distribution corridors in congested urban areas to MVDC, and connecting distributed renewable energy sources to a growing number of high-power applications.

General Electric (GE) Power & Water
Program: 
Project Term: 
03/28/2014 to 04/02/2015
Project Status: 
ALUMNI
Project State: 
Connecticut
Technical Categories: 
General Electric (GE) Power & Water is developing an innovative, high-energy chemistry for a water-based flow battery. A flow battery is an easily rechargeable system that stores its electrode--the material that provides energy--as liquid in external tanks. Flow batteries have typically been used in grid-scale storage applications, but their flexible design architecture could enable their use in vehicles. To create a flow battery suitable for EVs, GE will test new chemistries with improved energy storage capabilities and built a working prototype. GE's water-based flow battery would be inherently safe because no combustible components would be required and any reactive liquids would be contained in separate tanks. GE estimates that its flow battery could reduce costs by up to 75% while offering a driving range of approximately 240 miles.
General Electric (GE) Power & Water
Program: 
Project Term: 
05/01/2013 to 12/31/2014
Project Status: 
CANCELLED
Project State: 
Connecticut
Technical Categories: 
General Electric (GE) Power & Water is developing fabric-based wind turbine blades that could significantly reduce the production costs and weight of the blades. Conventional wind turbines use rigid fiberglass blades that are difficult to manufacture and transport. GE will use tensioned fabric uniquely wrapped around a spaceframe blade structure, a truss-like, lightweight rigid structure, replacing current clam shell wind blades design. The blade structure will be entirely altered, allowing for easy access and repair to the fabric while maintaining conventional wind turbine performance. This new design could reduce production costs by 70% and enable automated manufacturing while reducing the processing time by more than 50%. GE's fabric-based blades could be manufactured in sections and assembled on-site, enabling the construction of much larger wind turbines that can capture more wind with significantly lower production and transportation costs.
General Motors (GM)
Program: 
Project Term: 
03/30/2017 to 09/29/2020
Project Status: 
ACTIVE
Project State: 
Michigan
Technical Categories: 

General Motors will lead a team to develop "InfoRich" vehicle technologies that will combine advances in vehicle dynamic and powertrain control technologies with recent vehicle connectivity and automation technologies. The result will be a light duty gasoline vehicle that demonstrates greater than 20% fuel consumption reduction over current production vehicles while meeting all safety and exhaust emissions standards. On-board sensors and connected data will provide the vehicle with additional information such as the status of a traffic signal before a vehicle reaches an intersection, as well as traffic, weather, and accident information. This preview information enables the vehicle (and the driver) not only to react to current road conditions but also to plan for expected future conditions more efficiently. A proposed supervisory vehicle dynamic and powertrain controller will incorporate all the information available through connectivity and on-board sensors into an upper-level optimizer that determines the most fuel-efficient and safest vehicle operation. The upper-level optimizer sends brake, steering, speed, and torque requests to the two lower-level controllers: the vehicle dynamics controller (i.e. steering, acceleration and braking) and powertrain (i.e. engine, transmission) controller. The lower-level controllers, in turn, optimize their individual requests and send out commands to control the vehicle and powertrain. Overall energy efficiency increases by forecasting stopping events as early as possible, smoothing and reducing heavy acceleration, harmonizing speed, and optimizing the vehicle when approaching hills. The project combines General Motors' advanced vehicle/powertrain controls with Carnegie Mellon University's expertise in autonomous vehicles. Extensive real-world driving data available from the National Renewable Energy Laboratory's Transportation Secure Data Center and on-road tests will be used to validate improvements in fuel efficiency and assess real-world impacts.

General Motors (GM)
Program: 
Project Term: 
01/01/2010 to 03/31/2012
Project Status: 
ALUMNI
Project State: 
Michigan
Technical Categories: 

General Motors (GM) is using shape memory alloys that require as little as a 10°C temperature difference to convert low-grade waste heat into mechanical energy. When a stretched wire made of shape memory alloy is heated, it shrinks back to its pre-stretched length. When the wire cools back down, it becomes more pliable and can revert to its original stretched shape. This expansion and contraction can be used directly as mechanical energy output or used to drive an electric generator. Shape memory alloy heat engines have been around for decades, but the few devices that engineers have built were too complex, required fluid baths, and had insufficient cycle life for practical use. GM is working to create a prototype that is practical for commercial applications and capable of operating with either air- or fluid-based heat sources. GM's shape memory alloy based heat engine is also designed for use in a variety of non-vehicle applications. For example, it can be used to harvest non-vehicle heat sources, such as domestic and industrial waste heat and natural geothermal heat, and in HVAC systems and generators.

Program: 
Project Term: 
09/01/2010 to 02/28/2013
Project Status: 
ALUMNI
Project State: 
Virginia
Technical Categories: 
GeneSiC Semiconductor is developing an advanced silicon-carbide (SiC)-based semiconductor called an anode-switched thyristor. This low-cost, compact SiC semiconductor conducts higher levels of electrical energy with better precision than traditional silicon semiconductors. This efficiency will enable a dramatic reduction in the size, weight, and volume of the power converters and the electronic devices they are used in. GeneSiC is developing its SiC-based semiconductor for utility-scale power converters. Traditional silicon semiconductors can't process the high voltages that utility-scale power distribution requires, and they must be stacked in complicated circuits that require bulky insulation and cooling hardware. GeneSiC's semiconductors are well suited for high-power applications like large-scale renewable wind and solar energy installations.
Program: 
Project Term: 
12/20/2016 to 09/19/2018
Project Status: 
ALUMNI
Project State: 
Virginia
Technical Categories: 

GeneSiC Semiconductor will lead a team to develop high-power and voltage (1200V) vertical transistors on free-standing gallium nitride (GaN) substrates. Bipolar junction transistors amplify or switch electrical current. NPN junction transistors are one class of these transistors consisting of a layer of p-type semiconductor between two n-type semiconductors. The output electrical current between two terminals is controlled by applying a small input current at the third terminal. The proposed effort combines the latest innovations in device designs/process technology, bulk GaN substrate technology, and innovative metal-organic chemical vapor deposition epitaxial growth techniques. If the proposed design concept is successful, it will enable three-fold improvement of power density in high voltage devices, and provide a low-cost solution for mass market power conversion. Moreover, the device can be processed with significantly lower process complexity and cost, as compared to competing silicon carbide and GaN device technologies. GeneSiC will focus on all device development tasks while its partner, Adroit Materials, will focus on the GaN epitaxial growth on bulk GaN substrates, as well as detailed materials characterization according to specifications generated by GeneSiC.

George Washington University (GWU)
Program: 
Project Term: 
08/02/2017 to 11/16/2018
Project Status: 
ALUMNI
Project State: 
District Of Columbia
Technical Categories: 

George Washington University (GWU) will develop a new technique to produce commercial III-V substrates called Transfer Printed Virtual Substrates (TPVS). To reduce costs, the team proposes using a single source substrate to grow numerous virtual substrate layers. The team will use an enabling technology, called micro-transfer printing (MTP), to transfer the layers from the source substrate, in the form of many microscale "chiplets," and deposit them onto a low-cost handle (silicon, for example). Once printed, the clean surfaces of the MTP process allows each chiplet to complete the epitaxial growth process on the lower cost substrate after having been seeded from the initial source and having sacrificial layers in between to release the chiplets from the source wafer. The TPVS process can potentially yield tens to hundreds virtual substrates from a single source wafer. Any micro/nanoscale device grown on III-V substrates, such as sensors, detectors, lasers, power electronics, and high-speed transistors, will experience significant cost reductions as a direct result of TPVS deployment. TPVS can also reduce the demand for rare minerals used for a wide range of critical technological applications due to the greater efficiency with which each initial source substrate is utilized.

Program: 
Project Term: 
12/15/2017 to 06/14/2020
Project Status: 
ACTIVE
Project State: 
District Of Columbia
Technical Categories: 

George Washington University (GWU) and their partners will develop a hybrid CPV concept that combines highly efficient multi-junction solar cells and low-cost single-junction solar cells. When direct sunlight hits the lens array, it is concentrated 1000-fold and is focused onto the multi-junction solar cells. Diffuse light not captured in this process is instead captured by the low-cost single-junction solar cells. The module design is lightweight, fewer than 10 mm thick, and has a profile similar to conventional FPV. Moreover, the combination of the two types of cells increases efficiency. GWU will use its expertise in micro-transfer printing to fabricate and assemble the multi-junction cells. This process will reduce manufacturing costs and further increase efficiency.

Program: 
Project Term: 
10/01/2014 to 09/30/2018
Project Status: 
ALUMNI
Project State: 
Georgia
Technical Categories: 

Georgia Tech Research Corporation is developing a fuel cell that operates at temperatures less than 500°C by integrating nanostructured materials into all cell components. This is a departure from traditional fuel cells that operate at much lower or much higher temperatures. By developing multifunctional anodes that can efficiently reform and directly process methane, this fuel cell will allow for efficient use of methane. Additionally, the Georgia Tech team will develop nanocomposite electrolytes to reduce cell temperature without sacrificing system performance. These technological advances will enable an efficient, intermediate-temperature fuel cell for distributed generation applications.

Georgia Tech Research Corporation
Program: 
Project Term: 
02/12/2018 to 08/11/2020
Project Status: 
ACTIVE
Project State: 
Georgia
Technical Categories: 

Georgia Tech Research Corporation and its project team will develop a solid-state transformer for medium-voltage grid applications using silicon carbide with a focus on compact size and high-performance. Traditional grid connected transformers have been used for over 100 years to 'step down' higher voltage to lower voltage. Higher voltages allows for delivery of power over longer distances and lower voltages keeps consumers safe. But traditional distribution transformers lack integrated sensing, communications, and controls. They also lack the ability to control the voltage, current, frequency, power factor or anything else to improve local or global performance. Solid-state transformers can provide improvements and Georgia Tech's design seeks to address major roadblocks to their implementation, namely insulation, cooling, voltage change, and magnetic field issues, as well as downstream protection against abnormal current faults. If successful, the team will greatly increase transformer functionality while reducing its size over current technologies, affecting application areas like grid energy storage, solar photovoltaics and electric vehicle fast chargers, while also enabling better grid monitoring and easy retrofits.

Georgia Tech Research Corporation
Program: 
Project Term: 
03/20/2013 to 03/19/2016
Project Status: 
ALUMNI
Project State: 
Georgia
Technical Categories: 

Georgia Tech Research Corporation is developing a supercapacitor using graphene--a two-dimensional sheet of carbon atoms--to substantially store more energy than current technologies. Supercapacitors store energy in a different manner than batteries, which enables them to charge and discharge much more rapidly. The Georgia Tech team approach is to improve the internal structure of graphene sheets with 'molecular spacers,' in order to store more energy at lower cost. The proposed design could increase the energy density of the supercapacitor by 10-15 times over established capacitor technologies, and would serve as a cost-effective and environmentally safe alternative to traditional storage methods.

Georgia Tech Research Corporation
Program: 
Project Term: 
09/01/2010 to 02/28/2014
Project Status: 
ALUMNI
Project State: 
Georgia
Technical Categories: 
Georgia Tech Research Corporation is creating compact, low-profile power adapters and power bricks using materials and tools adapted from other industries and from grid-scale power applications. Adapters and bricks convert electrical energy into usable power for many types of electronic devices, including laptop computers and mobile phones. These converters are often called wall warts because they are big, bulky, and sometimes cover up an adjacent wall socket that could be used to power another electronic device. The magnetic components traditionally used to make adapters and bricks have reached their limits; they can't be made any smaller without sacrificing performance. Georgia Tech is taking a cue from grid-scale power converters that use iron alloys as magnetic cores. These low-cost alloys can handle more power than other materials, but the iron must be stacked in insulated plates to maximize energy efficiency. In order to create compact, low-profile power adapters and bricks, these stacked iron plates must be extremely thin--only hundreds of nanometers in thickness, in fact. To make plates this thin, Georgia Tech is using manufacturing tools used in microelectromechanics and other small-scale industries.
Program: 
Project Term: 
05/15/2019 to 05/14/2021
Project Status: 
ACTIVE
Project State: 
Georgia
Technical Categories: 
Georgia Tech Research Corporation
Program: 
Project Term: 
09/01/2010 to 06/30/2014
Project Status: 
ALUMNI
Project State: 
Georgia
Technical Categories: 
Georgia Tech Research Corporation is using innovative components and system design to develop a new type of absorption heat pump. Georgia Tech's new heat pumps are energy efficient, use refrigerants that do not emit greenhouse gases, and can run on energy from combustion, waste heat, or solar energy. Georgia Tech is leveraging enhancements to heat and mass transfer technology possible in micro-scale passages and removing hurdles to the use of heat-activated heat pumps that have existed for more than a century. Use of micro-scale passages allows for miniaturization of systems that can be packed as monolithic full-system packages or discrete, distributed components enabling integration into a variety of residential and commercial buildings. Compared to conventional heat pumps, Georgia Tech's design innovations will create an absorption heat pump that is much smaller, has higher energy efficiency, and can also be mass produced at a lower cost and assembly time. Georgia Tech received a separate award of up to $2,315,845 from the Department of the Navy to help decrease military fuel use.
Program: 
Project Term: 
05/02/2019 to 05/01/2022
Project Status: 
ACTIVE
Project State: 
Georgia
Technical Categories: 

The Georgia Tech Research Corporation (GTRC) will develop a new approach to internally cool permanent magnet motors. The technology could dramatically improve electric motors' power density and reduce system size and weight. To do so, the team will integrate motor and drive electronics into a unique system packaging incorporating an embedded advanced thermal management system. They will also develop wide bandgap power electronics packaging to enable high power density operations at higher temperature. The new design could substantially increase the power and torque density above the state of the art and enable more energy-efficient electric trucks, buses, and, potentially, aircraft.

Georgia Tech Research Corporation
Program: 
Project Term: 
05/03/2013 to 09/30/2016
Project Status: 
ALUMNI
Project State: 
Georgia
Technical Categories: 
Georgia Tech Research Corporation is developing a method to capture energy from wind vortices that form from a thin layer of solar-heated air along the ground. "Dust devils" are a random and intermittent example of this phenomenon in nature. Naturally, the sun heats the ground creating a thin air layer near the surface that is warmer than the air above. Since hot air rises, this layer of air will naturally want to rise. The Georgia Tech team will use a set of vanes to force the air to rotate as it rises, forming an anchored columnar vortex that draws in additional hot air to sustain itself. Georgia Tech's technology uses a rotor and generator to produce electrical power from this rising, rotating air similar to a conventional wind turbine. This solar-heated air, a renewable energy resource, is broadly available, especially in the southern U.S. Sunbelt, yet has not been utilized to date. This technology could offer more continuous power generation than conventional solar PV or wind. Georgia Tech's technology is a, low-cost, scalable approach to electrical power generation that could create a new class of renewable energy ideally suited for arid low-wind regions.
Georgia Tech Research Corporation
Program: 
Project Term: 
09/01/2010 to 01/31/2013
Project Status: 
ALUMNI
Project State: 
Georgia
Technical Categories: 
Georgia Tech Research Corporation is developing a cost-effective, utility-scale power router that uses an enhanced transformer to more efficiently direct power on the grid. Existing power routing technologies are too expensive for widespread use, but the ability to route grid power to match real-time demand and power outages would significantly reduce energy costs for utilities, municipalities, and consumers. Georgia Tech is adding a power converter to an existing grid transformer to better control power flows at about 1/10th the cost of existing power routing solutions. Transformers convert the high-voltage electricity that is transmitted through the grid into the low-voltage electricity that is used by homes and businesses. The added converter uses fewer steps to convert some types of power and eliminates unnecessary power storage, among other improvements. The enhanced transformer is more efficient, and it would still work even if the converter fails, ensuring grid reliability.
Georgia Tech Research Corporation
Program: 
Project Term: 
07/01/2010 to 10/31/2012
Project Status: 
ALUMNI
Project State: 
Georgia
Technical Categories: 
A team of six faculty members at Georgia Tech Research Corporation is developing an enhanced membrane by fitting metal organic frameworks, compounds that show great promise for improved carbon capture, into hollow fiber membranes. This new material would be highly efficient at removing CO2 from the flue gas produced at coal-fired power plants. The team is analyzing thousands of metal organic frameworks to identify those that are most suitable for carbon capture based both on their ability to allow coal exhaust to pass easily through them and their ability to select CO2 from that exhaust for capture and storage. The most suitable frameworks would be inserted into the walls of the hollow fiber membranes, making the technology readily scalable due to their high surface area. This composite membrane would be highly stable, withstanding the harsh gas environment found in coal exhaust.
Georgia Tech Research Corporation
Program: 
Project Term: 
01/11/2012 to 02/15/2015
Project Status: 
ALUMNI
Project State: 
Georgia
Technical Categories: 
Georgia Tech Research Corporation is developing a decentralized, autonomous, internet-like control architecture and control software system for the electric power grid. Georgia Tech's new architecture is based on the emerging concept of electricity prosumers--economically motivated actors that can produce, consume, or store electricity. Under Georgia Tech's architecture, all of the actors in an energy system are empowered to offer associated energy services based on their capabilities. The actors achieve their sustainability, efficiency, reliability, and economic objectives, while contributing to system-wide reliability and efficiency goals. This is in marked contrast to the current one-way, centralized control paradigm.
Georgia Tech Research Corporation
Program: 
Project Term: 
07/27/2016 to 12/31/2017
Project Status: 
ALUMNI
Project State: 
Georgia
Technical Categories: 

Georgia Tech Research Corporation will develop hollow fiber membranes containing metal-organic framework (MOF) thin films to separate propylene from propane. The nanoporous MOF film is supported on the inside surfaces of the tubular polymeric hollow fibers. Chemicals introduced into the center of the tube are separated through the MOF membrane by a molecular sieving process. Traditional olefin production processes are performed at pressures up to 20 bar, requiring large energy and capital costs. A key feature of the team's technology is the ability to synthesize membranes at near-ambient liquid-phase conditions and perform olefin separation at lower pressures as low as 6 bar. As the team evaluates using its MOF membranes to separate propylene from propane, the team will also develop detailed correlations between processing conditions, membrane morphology, and membrane performance. Another important task is to perform a detailed economic evaluation of the technology and establish its economic advantages compared to existing and other proposed technologies. The general separations concept also has potential to be used for a larger range of petrochemical and gas separations.

Program: 
Project Term: 
09/23/2019 to 09/22/2022
Project Status: 
ACTIVE
Project State: 
Georgia

Georgia Tech is developing a novel hybrid direct current (DC) circuit breaker that could enable multi-terminal DC power systems. The breaker's mechanical switch enables switching speeds 10 times faster than existing technology, severing the mechanical linkage, while the power electronics-based circuit handles the fault current. A new configuration of the fast switch and solid-state devices/circuits will reduce steady-state losses compared to state-of-the-art hybrid circuit breakers. A new control scheme dramatically reduces the peak fault current levels, enabling more compact packaging and increasing reliability.

Georgia Tech Research Corporation
Program: 
Project Term: 
04/17/2013 to 10/17/2016
Project Status: 
ALUMNI
Project State: 
Georgia
Technical Categories: 
Georgia Tech Research Corporation is developing a high-efficiency concentrating solar receiver and reactor for the production of solar fuels. The team will develop a system that uses liquid metal to capture and transport heat at much higher temperatures compared to state-of-the-art concentrating solar power facilities. This high temperature system will be combined with the team's novel reactor to produce solar fuels that allow the flexibility to store and transport solar energy for later use or for immediate power production. Higher temperatures should result in much higher efficiencies and therefore lower costs of produced fuel or electricity. Additionally, plant operators would have the flexibility to match electricity or fuel production with the changing market demand to improve the cost effectiveness of the plant.
Program: 
Project Term: 
01/06/2016 to 08/15/2018
Project Status: 
ALUMNI
Project State: 
Georgia
Technical Categories: 

Researchers with the Georgia Tech Research Corporation will combine real-time analysis of transportation network data with distributed simulation modeling to provide drivers with information and incentives to reduce energy consumption. The team's system model will use three sources of data to simulate the transportation network of the Atlanta metro area. The Georgia Department of Transportation's intelligent transportation system (ITS) data repository, hosted at Georgia Tech, will provide 20-second, lane-specific operations data while team partner, AirSage, will provide highway speeds and origin-destination patterns obtained from cellular networks. The team will also use real-time speed data collected from 40,000 volunteers using a smartphone application. The researchers will use pattern recognition algorithms to identify traffic accidents and recurrent congestion, predict traffic congestion severity, and user responses to congested conditions. Using this information, the team will develop a control architecture that will signal drivers with options to alter departure times, take specific routes, and/or use alternate modes of transportation to reduce energy use. The team anticipates that users will adopt the suggested guidance because the suggestions identified will not increase the time or cost of the trip, and could ultimately save users money in fuel costs.

Program: 
Project Term: 
07/12/2019 to 07/11/2022
Project Status: 
ACTIVE
Project State: 
Georgia
Technical Categories: 
The Georgia Tech Research Corporation will design an autonomous, resilient and cyber-secure protection and control system for each power plant and substation on its grid. This will eliminate complex coordinated protection settings and transform the protection practice into a simpler, intelligent, automated and transparent process. The technology will integrate protective relays into an intelligent protection scheme that relies on existing high data redundancy in substations to (a) validate data; (b) detect hidden failures and in this case self-heal the protection and control system; (c) detect cyber-attacks (focus on false data and/or malicious control injection) and identify the source for attribution; and (d) provide the full state of the system with minimal delay for optimal full state feedback control.