Sorry, you need to enable JavaScript to visit this website.

ARPA-E Projects

Search ARPA-E Projects by Keyword

Displaying 1 - 4 of 4
Arkansas Power Electronics International (APEI)
Program: 
Project Term: 
09/14/2010 to 03/31/2014
Project Status: 
ALUMNI
Project State: 
Arkansas

Currently, charging the battery of an electric vehicle (EV) is a time-consuming process because chargers can only draw about as much power from the grid as a hair dryer. APEI is developing an EV charger that can draw as much power as a clothes dryer, which would drastically speed up charging time. APEI's charger uses silicon carbide (SiC)-based power transistors. These transistors control the electrical energy flowing through the charger's circuits more effectively and efficiently than traditional transistors made of straight silicon. The SiC-based transistors also require less cooling, enabling APEI to create EV chargers that are 10 times smaller than existing chargers.

Program: 
Project Term: 
02/03/2017 to 02/02/2018
Project Status: 
ALUMNI
Project State: 
Arkansas
Technical Categories: 

Cree Fayetteville will develop high voltage (10kV), high energy density (30 J/cm3), high temperature (150 °C+) capacitors utilizing chemical vapor deposition (CVD) diamond capable of powering the next generation of high-performance power electronics systems. CVD diamond is a superior material for capacitors due to its strong electrical, mechanical, and materials qualities that are inherently stable over varying temperatures. It also has similar qualities of single crystal diamond without the high cost. Commercial CVD diamond deposition will be utilized to prove the feasibility of the technology with consistent, low cost, high-resistivity diamond films. The CVD diamond will be used as an optimal dielectric for today's demanding power electronics applications. Most power electronics systems require large capacitors to filter switching noise and provide sufficient energy to loads during transient periods. But present-day film and ceramic capacitor technologies are quickly becoming obsolete as the switching frequency and operating temperature of power electronic systems continue to increase. Using CVD diamond for this purpose may provide a capacitor technology that does not experience lifetime-limiting overheating, at both low frequency (high energy) and high frequency (low equivalent series resistance) conditions, and with reasonable size and cost. In conjunction with a robust electrode metallurgy and proven high-temperature packaging techniques, energy densities in excess of 80 J/cm3 have been modeled; the proposed specification of 30 J/cm3 will be a drastic improvement over current technologies. The team's effort will primarily focus on the development and characterization of multi-layer CVD diamond capacitor design, packaging, and fabrication techniques, resulting in proof of concept prototypes to demonstrate the technology feasibility.

Program: 
Project Term: 
03/14/2018 to 03/13/2021
Project Status: 
ACTIVE
Project State: 
Arkansas
Technical Categories: 

Cree Fayetteville (operating as Wolfspeed, A Cree Company) will team with Ford Motor Company and the University of Michigan-Dearborn to build a power converter for DC fast chargers for electric vehicles using a solid-state transformer based on silicon carbide. The team will construct a single-phase 500 kW building block for a DC fast charger that is at least four times the power density of todays installed units. This device would offer significant improvements in efficiency (greater than 60% less power losses), size/weight (greater than 75% smaller size, 85% less weight), and cost (40% lower materials costs) over the state-of-the-art. Using this system, an electric vehicle (100 kWh) will deliver long driving range with 6 mins of recharge. The compact size also reduces the footprint and structural costs in high-cost real estate in areas with high-population. The teaming of an end user (Ford) directly with the disruptive technology provider (Cree Fayetteville) may accelerate the deployment of fast charge capability for electric vehicles.

Program: 
Project Term: 
03/15/2018 to 09/14/2020
Project Status: 
ACTIVE
Project State: 
Arkansas
Technical Categories: 

The University of Arkansas and its project team will develop a power inverter system for use in the electrification of construction equipment. Heavy equipment providers are increasingly investing in electrification capability to perform work in harsh environments. As with all electrified systems, size, weight and power considerations must be met by these systems. The team's approach is to utilize the advantages of wide bandgap semiconductors not only in the converter elements themselves, but also in the converter's gate driver as well. This innovation of having the low-voltage circuitry built from the same materials as the power devices enables higher reliability, longer life, and a more compact system packages. Their multi-objective optimization method will provide the best outcome and trade the efficiency and power density goals against circuit complexity, device ratings, thermal management, and reliability constraints. If successful, the team will achieve an improvement of four times the power density and reduce converter cost by 50% compared to today's technology. The proposed design methods and technological advances can also be applied to many applications such as electric vehicles, smart grid power electronics, and data centers.