ARPA-E Projects
Search ARPA-E Projects by Keyword
Arizona State University (ASU) and its partners will develop new windowpanes for single-pane windows to minimize heat losses and improve soundproofing without sacrificing durability or transparency. The team from ASU will produce a thermal barrier composed of silicon dioxide nanoparticles deposited on glass by supersonic aerosol spraying. The layer will minimize heat losses and be transparent at a substantially lower cost than can be done presently with silica aerogels, for example. A second layer deposited using the same method will reflect thermal radiation. The windowpanes will also incorporate layers of dense polymers to control condensation and adhesion, while improving strength. The coating is designed to last more than 20 years and be resistant to damage from scratching, peeling, or freezing of water vapor within the pores of the silica layer.
Arizona State University (ASU) proposes a comprehensive project to advance fundamental knowledge in the selective area doping of GaN using selective regrowth of gallium nitride (GaN) materials. This will lead to the development of high-performance GaN vertical power transistors. The ASU team aims to develop a better mechanistic understanding of these fundamental materials issues, by focusing on three broad areas. First, they will use powerful characterization methods to study fundamental materials properties such as defects, surface states, and investigate possible materials degradation mechanisms. Next, they will develop innovative epitaxial growth and fabrication processes such as Atomic Layer Etching and novel surface passivations, to tackle the materials engineering challenges related to selective area doping for GaN p-n junctions. Finally, they will apply their research to demonstrate randomly placed, reliable, contactable p-n junctions for GaN vertical power devices. If successful, this project will provide a path towards high efficiency, high power, small form factor, and high thermal performance GaN vertical power devices.
Arizona State University (ASU) is developing a hybrid solar energy system that modifies a CSP trough design, replacing the curved mirror with solar cells that collect both direct and diffuse rays of a portion of sunlight while reflecting the rest of the direct sunlight to a thermal absorber to generate heat. Electricity from the solar cells can be used immediately while the heat can be stored for later use. Today's CSP systems offer low overall efficiency because they collect only direct sunlight, or the light that comes in a straight beam from the sun. ASU's technology could increase the amount of light that can be converted to electricity by collecting diffuse sunlight, or light that has been scattered by the atmosphere, clouds, and off the earth. By integrating curved solar cells into a hybrid trough system, ASU will effectively split the solar spectrum and use each portion of the spectrum in the most efficient way possible. Diffuse and some direct sunlight are converted into electricity in the solar cells, while the unused portion of the direct sunlight is reflected for conversion to heat.
Arizona State University (ASU) is developing a solar cell that can maintain efficient operation at temperatures above 400°C. Like many other electronics, solar panels work best in cooler environments. As the temperature of traditional solar cells increases beyond 100°C, the energy output decreases markedly and components are more prone to failure. ASU's technology adapts semiconducting materials used in today's light-emitting diode (LED) industry to enable efficient, long-term high-temperature operation. These materials could allow the cells to maintain operation at much higher temperatures than today's solar cells, so they can be integrated as the sunlight-absorbing surface of a thermal receiver in the next generation of hybrid solar collectors. The solar cell would provide electricity using a portion of the incoming sunlight, while the receiver collects usable heat at high temperature that can be stored and dispatched to generate electricity as needed.
Arizona State University (ASU) is engineering a type of photosynthetic bacteria that efficiently produce fatty acids--a fuel precursor for biofuels. This type of bacteria, called Synechocystis, is already good at converting solar energy and carbon dioxide (CO2) into a type of fatty acid called lauric acid. ASU has modified the organism so it continuously converts sunlight and CO2 into fatty acids--overriding its natural tendency to use solar energy solely for cell growth and maximizing the solar-to-fuel conversion process. ASU's approach is different because most biofuels research focuses on increasing cellular biomass and not on excreting fatty acids. The project has also identified a unique way to convert the harvested lauric acid into a fuel that can be easily blended with existing transportation fuels.
Arizona State University (ASU) is developing a new class of metal-air batteries. Metal-air batteries are promising for future generations of EVs because they use oxygen from the air as one of the battery's main reactants, reducing the weight of the battery and freeing up more space to devote to energy storage than Li-Ion batteries. ASU technology uses Zinc as the active metal in the battery because it is more abundant and affordable than imported lithium. Metal-air batteries have long been considered impractical for EV applications because the water-based electrolytes inside would decompose the battery interior after just a few uses. Overcoming this traditional limitation, ASU's new battery system could be both cheaper and safer than today's Li-Ion batteries, store from 4-5 times more energy, and be recharged over 2,500 times.
Arizona State University (ASU) will develop a stochastic optimal power flow (SOPF) framework, which would integrate uncertainty from renewable resources, load, distributed storage, and demand response technologies into bulk power system management in a holistic manner. The team will develop SOPF algorithms for the security-constrained economic dispatch (SCED) problem used to manage variability in the electric grid. The algorithms will be implemented in a software tool to provide system operators with real-time guidance to help coordinate between bulk generation and large numbers of DERs and demand response. ASU's project features unique data-analytics based short-term forecast for bulk and distributed wind and solar generation utilized by the advisory tool that generates real-time recommendations for market operators based on the SOPF algorithm outputs.
Fluidic Energy is developing a low-cost, rechargeable, high-power module for Zinc-air batteries that will be used to store renewable energy. Zinc-air batteries are traditionally found in small, non-rechargeable devices like hearing aids because they are well-suited to delivering low levels of power for long periods of time. Historically, Zinc-air batteries have not been as useful for applications which require periodic bursts of power, like on the electrical grid. Fluidic hopes to fill this need by combining the high energy, low cost, and long run-time of a Zinc-air battery with new chemistry providing high power, high efficiency, and fast response. The battery module could allow large grid-storage batteries to provide much more power on very short demand--the most costly kind of power for utilities--and with much more versatile performance.
University of Arizona will develop a micro-CPV system that combines a CPV cell with dual-sided FPV panels to capture direct, diffuse, and reflected sunlight. The team's system will feature lenses that focus sunlight onto a horizontal waveguide, which further concentrates the light onto high-performance micro-CPV solar cells. Dual-sided solar panels, attached beneath the CPV cells, enable diffuse light collection on one side and reflected light collection on the other side. The system will be mounted on a two-axis tracker that will allow for optimal collection of sunlight throughout the day.
University of Arizona is developing a hybrid solar converter that splits the light spectrum, sending a band of the solar spectrum to solar cells to generate electricity and the rest to a thermal fluid to be stored as heat. The team's converter builds off the CSP trough concentrator design, integrating a partially transmitting mirror near the focus to reflect visible wavelengths of light onto high-efficiency solar cells while passing ultraviolet and most infrared light to heat a thermal fluid. The visible light is concentrated further before reaching the solar cells to maximize their power output. A thermal management system built into the solar cells allows them to be maintained at an optimal operating temperature and could be used to recover useful waste heat. Hot thermal fluid generated by the converter can be stored and used when needed to drive a turbine to produce electricity. The converter leverages the advantages of both PV and CSP to use each portion of the solar spectrum most effectively. This could enable utilities to provide dispatchable, on-demand, solar electricity at low cost even when the sun does not shine.