Sorry, you need to enable JavaScript to visit this website.

ARPA-E Projects

Search ARPA-E Projects by Keyword

Displaying 1 - 177 of 177
Program: 
Project Term: 
04/01/2016 to 07/13/2019
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

The team led by Achates Power will develop an internal combustion engine that combines two promising engine technologies: an opposed-piston (OP) engine configuration and gasoline compression ignition (GCI). Compression ignition OP engines are inherently more efficient than existing spark-ignited 4-stroke engines (potentially up to 50% higher thermal efficiency using gasoline) while providing comparable power and torque, and showing the potential to meet future tailpipe emissions standards. GCI uses gasoline or gasoline-like fuels in a compression ignition engine to deliver thermal efficiency on par with diesel combustion. However, unlike conventional diesel engines, this technology does not require the added expense of high-pressure fuel injection equipment and sophisticated aftertreatment systems. The OP/GCI engine technology is adaptable to a range of engine configurations and can be used in all types of passenger vehicles and light trucks. By successfully combining the highly fuel efficient architecture of the OP engine with the ultra-low emissions GCI technology, the resulting engine could be transformational, significantly reducing U.S. petroleum consumption and carbon dioxide.

Program: 
Project Term: 
01/28/2019 to 07/27/2020
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 
Achates Power will develop an opposed-piston engine suitable for hybrid electric vehicle applications. The team will use a unique gasoline compression ignition design that minimizes energy losses (e.g., heat transfer) typical in conventional internal combustion engines. A motor-generator integrated on each engine crankshaft will provide independent control to each piston and eliminate all torque transmitted across the crankshaft connection, thus reducing engine size, mass, cost, friction, and noise. Engine efficiency improvement is expected through this real-time control of the combustion process. The proposed technology has the potential to offer manufacturers a full-range of cost-effective solutions to improve vehicle efficiency and reduce CO2 emissions.A highly efficient hybrid opposed-piston engine can be easily integrated in the existing fueling infrastructure and offers the power and convenience that U.S. consumers demand.
Program: 
Project Term: 
04/15/2015 to 08/26/2018
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

Aeris Technologies will partner with Rice University and Los Alamos National Laboratory to develop a complete methane leak detection system that allows for highly sensitive, accurate methane detection at natural gas systems. The team will combine its novel compact spectrometer based on a mid-infrared laser, its patent-pending multi-port sampling system, and an advanced computational approach to leak quantification and localization. Their approach will use artificial neural networks and dispersion models to quantify and locate leaks with increased accuracy and reduced computational time for use in a diverse range of meteorological conditions and wellpad configurations. At each wellpad, a control unit will house the core sensor, a computing unit to process data, and wireless capability to transmit leak information to an operator, while the multi-port gas-sampling system will be distributed across the wellpad. Aeris' goal is to be able to detect and measure methane leaks smaller than 1 ton per year from a 10 meter by 10 meter site. At this level of sensitivity, which is in the ppb range, Aeris estimates that its system can facilitate a 90% reduction in fugitive methane emissions. Compared to current monitoring systems that can cost $25,000 annually, Aeris' goal is a cost of $3,000 or less a year to operate.

Program: 
Project Term: 
02/21/2013 to 03/31/2016
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

Alveo Energy is developing a grid-scale storage battery using Prussian Blue dye as the active material within the battery. Prussian Blue is most commonly known for its application in blueprint documents, but it can also hold electric charge. Though it provides only modest energy density, Prussian Blue is so readily available and inexpensive that it could provide a cost-effective and sustainable storage solution for years to come. Alveo will repurpose this inexpensive dye for a new battery that is far cheaper and less sensitive to temperature, air, and other external factors than comparable systems. This will help to facilitate the adoption and deployment of renewable energy technology. Alveo's Prussian Blue dye-based grid-scale storage batteries would be safe and reliable, have long operational lifetime, and be cheaper to produce than any existing battery technology.

Program: 
Project Term: 
01/01/2019 to 12/31/2021
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 
The Antora Energy team will develop key components for a thermal energy storage system (solid state thermal battery) that stores thermal energy in inexpensive carbon blocks. To charge the battery, power from the grid will heat the blocks to temperatures exceeding 2000°C (3632°F) via resistive heating. To discharge energy, the hot blocks are exposed to thermophotovoltaics (TPV) panels that are similar to traditional solar panels but specifically designed to efficiently use the heat radiated by the blocks. The team will develop a thermophotovoltaic heat engine capable of efficiently and durably converting high-temperature heat into electricity. It will seek to double panel efficiency through new materials and smart system design, potentially enabling a cost effective grid storage solution.
Program: 
Project Term: 
06/01/2013 to 09/30/2016
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

Applied Materials is working with ARPA-E and the Office of Energy Efficiency and Renewable Energy (EERE) to build a reactor that produces the silicon wafers used in solar panels at a dramatically lower cost than existing technologies. Current wafer production processes are time consuming and expensive, requiring the use of high temperatures to produce ingots from molten silicon that can be sliced into wafers for use in solar cells. This slicing process results in significant silicon waste--or "kerf loss"--much like how sawdust is created when sawing wood. With funding from ARPA-E, Applied Materials is developing a reactor where ultra-thin silicon wafers are created by depositing silicon directly from vapor onto specialized reusable surfaces, allowing a significant reduction in the amount of silicon used in the process. Since high purity silicon is one of the most significant costs in producing solar cells, this kerf-less approach could significantly reduce the overall cost of producing solar panels. Applied Materials is partnering with Suniva, who will use funds from EERE to integrate these low-cost wafers into solar cells and modules that generate low-cost electricity, and with Arizona State University, who will develop high-efficiency devices on ultra-thin kerfless substrates. This partnership could enable low-cost, domestic manufacturing of solar modules, allowing the U.S. to reduce the amount of equipment we import from other countries.

Program: 
Project Term: 
07/01/2010 to 09/30/2013
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Applied Materials is developing new tools for manufacturing Li-Ion batteries that could dramatically increase their performance. Traditionally, the positive and negative terminals of Li-Ion batteries are mixed with glue-like materials called binders, pressed onto electrodes, and then physically kept apart by winding a polymer mesh material between them called a separator. With the Applied Materials system, many of these manually intensive processes will be replaced by next generation coating technology to apply each component. This process will improve product reliability and performance of the cells at a fraction of the current cost. These novel manufacturing techniques will also increase the energy density of the battery and reduce the size of several of the battery's components to free up more space within the cell for storage.
Program: 
Project Term: 
01/01/2012 to 09/30/2015
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Arcadia Biosciences, in collaboration with the University of California-Davis, is developing plants that produce vegetable oil in their leaves and stems. Ordinarily, these oils are produced in seeds, but Arcadia Biosciences is turning parts of the plant that are not usually harvested into a source of concentrated energy. Vegetable oil is a concentrated source of energy that plants naturally produce and is easily separated after harvest. Arcadia Biosciences will isolate traits that control oil production in seeds and transfer them into leaves and stems so that all parts of the plants are oil-rich at harvest time. After demonstrating these traits in a fast-growing model plant, Arcadia Biosciences will incorporate them into a variety of dedicated biofuel crops that can be grown on land not typically suited for food production.
Program: 
Project Term: 
01/11/2012 to 03/31/2014
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

AutoGrid, in conjunction with Lawrence Berkeley National Laboratory and Columbia University, will design and demonstrate automated control software that helps manage real-time demand for energy across the electric grid. Known as the Demand Response Optimization and Management System - Real-Time (DROMS-RT), the software will enable personalized price signals to be sent to millions of customers in extremely short timeframes--incentivizing them to alter their electricity use in response to grid conditions. This will help grid operators better manage unpredictable demand and supply fluctuations in short time-scales--making the power generation process more efficient and cost effective for both suppliers and consumers. DROMS-RT is expected to provide a 90% reduction in the cost of operating demand response and dynamic pricing programs in the U.S.

Program: 
Project Term: 
01/01/2014 to 12/12/2016
Project Status: 
CANCELLED
Project State: 
California
Technical Categories: 
Avogy will develop a vertical transistor with a gallium nitride (GaN) semiconductor that is 30 times smaller than conventional silicon transistors but can conduct significantly more electricity. Avogy's GaN transistor will function effectively in high-power electronics because it can withstand higher electric fields and operate at higher temperatures than comparable silicon transistors. Avogy's vertical device architecture can also enable higher current devices. With such a small and efficient device, Avogy projects it will achieve functional cost parity with conventional silicon transistors within three years, while offering game-changing performance improvements.
Program: 
Project Term: 
08/04/2017 to 02/03/2020
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 

Ayar Labs will develop new intra-rack configurations using silicon-based photonic (optical) transceivers, optical devices that transmit and receive information. The team will additionally develop methods to package their photonic transceiver with an electronic processor chip. Marrying these two components will reduce the size and cost of the chip system. Integrated packaging also moves the photonics closer to the chip, which increases energy efficiency by reducing the amount of "hops" between components. If successful, the project will prove that chip packages incorporating both optics and processors, or optics and switches, are possible. This will finally allow optics to penetrate deep into an electrical system and relieve chip interconnect bottlenecks, enabling system architecture improvements to achieve nearly double the energy efficiency with a structure more optimized for future data-use cases such as "big data" analytics and machine learning.

Bio Architecture Lab
Program: 
Project Term: 
04/30/2012 to 06/30/2013
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

E. I. du Pont de Nemours & Company (DuPont) and Bio Architecture Lab are exploring the commercial viability of producing fuel-grade isobutanol from macroalgae (seaweed). Making macroalgae an attractive substrate for biofuel applications however, will require continued technology development. Assuming these developments are successful, initial assessments suggest macroalgae aquafarming in our oceans has the potential to produce a feedstock with cost in the same range as terrestrial-based substrates (crop residuals, energy crops) and may be the feedstock of choice in some locations. The use of macroalgae also diversifies the sources of U.S. biomass in order to provide more options in meeting demand for biofuels. The process being developed will use a robust industrial biocatalyst (microorganism) capable of converting macroalgal-derived sugars directly into isobutanol. Biobutanol is an advanced biofuel with significant advantages over ethanol, including higher energy content, lower greenhouse gas emissions, and the ability to be blended in gasoline at higher levels than ethanol without changes to existing automobiles or the fuel industry infrastructure. Butamax is currently commercializing DuPont's biobutanol fermentation technology that uses sugar and starch feedstocks.

Program: 
Project Term: 
10/01/2012 to 09/30/2016
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Blackpak will use high-strength, high-surface-area carbon to develop a sorbent-based natural gas storage vessel in which the sorbent itself is the container, eliminating the external pressure vessel altogether. This design could store natural gas at comparable or lower weight and smaller size than conventional compressed gas tanks while reducing the pressure of the natural gas in the vehicle tank. By reducing tank pressure, the system will enable home vehicle refueling at greatly reduced complexity and cost, making these systems accessible to the general public. In addition, the container-less storage system can be easily formed into a range of shapes, allowing automobile designers to seamlessly integrate the natural gas storage into the vehicle design, without sacrificing passenger space.
California Institute of Technology (Caltech)
Program: 
Project Term: 
02/11/2016 to 08/10/2019
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Researchers at the California Institute of Technology (Caltech) and their partners will design and fabricate a new CPV module with features that can capture both direct and diffuse sunlight. The team's approach uses a luminescent solar concentrator (LSC) sheet that includes quantum dots to capture and re-emit sunlight, micro-PV cells matched to the color of the light from the quantum dots, and a coating of advanced materials that enhance concentration and delivery of sunlight to the micro-PV cells. In addition, the light not captured by the quantum dots will impinge on a tandem solar cell beneath the LSC sheet. The design of the LSC will focus on lowering the number of expensive micro-PV cells needed within the concentrator sheet, which will reduce system costs, but still maintain high efficiency. The design will also allow the module to be effective without any tracking system, making it potentially attractive for all PV markets, including space-constrained rooftops.
California Institute of Technology (Caltech)
Program: 
Project Term: 
03/09/2015 to 09/30/2017
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
The California Institute of Technology (Caltech) team is using first-principles reasoning (i.e. a mode of examination that begins with the most basic physical principles related to an issue and "builds up" from there) and advanced computational modeling to ascertain the underlying mechanisms that cause acoustic waves to affect catalytic reaction pathways. The team will first focus their efforts on two types of reactions for which there is strong experimental evidence that acoustic waves can enhance catalytic activity: Carbon Monoxide (CO) oxidation, and Ethanol decomposition. Armed with this new understanding, the team will suggest promising applications for acoustic wave enhanced catalysis to new reactions with large energy and emissions footprints, such as ammonia synthesis. As an ARPA-E IDEAS project, this research is at a very early stage. However, this novel approach to acoustic wave enhanced catalysis has the potential to improve energy and resource efficiency across broad swathes of the chemical, industrial, and other sectors of the economy.
California Institute of Technology (Caltech)
Program: 
Project Term: 
10/01/2015 to 12/31/2018
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

Caltech, in coordination with Los Alamos National Laboratory (LANL), will investigate the scaling of adiabatic heating of plasma by propelling magnetized plasma jets into stationary heavy gases and/or metal walls. This is the reverse of the process that would occur in an actual fusion reactor - where a gas or metal liner would compress the plasma - but will provide experimental data to assess the magneto-inertial fusion approach. By using this alternative frame of reference, the researchers will be able to conduct experiments more frequently and at a lower cost because the experimental setup is non-destructive. The team will investigate the jet-target collision using many experiments with a wide range of parameters to determine the actual equation of state relating compression, change in magnetic field, and temperature increase. The experimental work will be supplemented with advanced 3D computer models. If successful, these results will show that compressional heating by a liner is a viable method for increasing temperatures to the levels required for magneto-inertial fusion. The study will also provide critical information on the interactions and limitations for a variety of possible driver and plasma target combinations being developed across the ALPHA program portfolio.

California Institute of Technology (Caltech)
Program: 
Project Term: 
03/01/2012 to 06/01/2015
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
The California Institute of Technology (Caltech) is developing a distributed automation system that allows distributed generators--solar panels, wind farms, thermal co-generation systems--to effectively manage their own power. To date, the main stumbling block for distributed automation systems has been the inability to develop software that can handle more than 100,000 distributed generators and be implemented in real time. Caltech's software could allow millions of generators to self-manage through local sensing, computation, and communication. Taken together, localized algorithms can support certain global objectives, such as maintaining the balance of energy supply and demand, regulating voltage and frequency, and minimizing cost. An automated, grid-wide power control system would ease the integration of renewable energy sources like solar power into the grid by quickly transmitting power when it is created, eliminating the energy loss associated with the lack of renewable energy storage capacity of the grid.
California Institute of Technology (Caltech)
Program: 
Project Term: 
08/25/2017 to 08/24/2018
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

The team at the California Institute of Technology (Caltech) has developed a method to determine the mechanical properties of lithium as a function of size, temperature, and microstructure. The body of scientific knowledge on these properties and the way dendrites form and grow is very limited, in part due to the reactivity of metallic lithium with components of air such as water and carbon dioxide. The team proposes to conduct a targeted investigation on the properties of electrodeposited lithium metal in commercial thin-film solid-state batteries. As part of the effort, the team will perform structural and mechanical testing on electrodeposited lithium, at dendrite-relevant dimensions. Their investigation will provide new information on the microstructure, strength, and stiffness of electrodeposited lithium. Finally, they will conduct cycling experiments on the commercial cells to observe lithium transport and dendrite nucleation and growth. If successful, the project will result in new knowledge about the microstructure and properties of lithium, and may further our understanding of dendrite nucleation and growth mechanisms - a starting point to developing higher energy battery technologies.

California Institute of Technology (Caltech)
Program: 
Project Term: 
03/28/2013 to 09/27/2016
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
The California Institute of Technology (Caltech) is developing a solar module that splits sunlight into individual color bands to improve the efficiency of solar electricity generation. For PV to maintain momentum in the marketplace, the energy conversion efficiency must increase significantly to result in reduced power generation costs. Most conventional PV modules provide 15-20% energy conversion efficiency because their materials respond efficiently to only a narrow band of color in the sun's spectrum, which represents a significant constraint on their efficiency. To increase the light conversion efficiency, Caltech will assemble a solar module that includes several cells containing several different absorbing materials, each tuned to a different color range of the sun's spectrum. Once light is separated into color bands, Caltech's tailored solar cells will match each separated color band to dramatically improve the overall efficiency of solar energy conversion. Caltech's approach to improve the efficiency of PV solar generation should enable improved cost-competitiveness for PV energy.
Program: 
Project Term: 
01/06/2014 to 01/05/2015
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Calysta Energy will develop a new bioreactor technology to enable the efficient biological conversion of methane into liquid fuels. While reasonably efficient, Gas-to-liquid (GTL) conversion is difficult to accomplish without costly and complex infrastructure. Biocatalysts are anticipated to reduce the cost of GTL conversion. Calysta will address this by using computational fluid dynamics to model best existing high mass transfer bioreactor designs and overcome existing limitations. Calysta will make the newly developed technology available to the broader research community, which could help other research groups to quickly test and commercialize their methane conversion processes.
Program: 
Project Term: 
05/01/2018 to 07/15/2019
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

The Catalina Sea Ranch team will lead a MARINER Category 1 project to design an advanced giant kelp cultivation system for deployment on open ocean sites to assess their ability to produce economical and sustainable biomass for a future biofuels industry. The team plans to develop solutions to the main challenges facing macroalgae cultivation: scalability of seeding, cultivation, and harvest; survivability of the offshore installations; energy use and ecosystem impact; predictability of yield and quality of harvested biomass; and cost effectiveness. The effort will begin by optimizing macroalgae cultivation in the open ocean through site-specific adaption and techno-economic modeling of a proven offshore cultivation system. In collaboration with its commercial partners, the team will then use a direct seeding method, which deposits young plants onto specially designed substrates to save money and time during the hatchery and deployment phase. Additionally, the team's mechanical partial harvest technology, which allows the same plant to be cut multiple times, is expected to further reduce annual seeding costs compared to the state of the art systems.

Program: 
Project Term: 
01/01/2010 to 12/31/2013
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Ceres is developing bigger and better grasses for use in biofuels. The bigger the grass yield, the more biomass, and more biomass means more biofuel per acre. Using biotechnology, Ceres is developing grasses that will grow bigger with less fertilizer than current grass varieties. Hardier, higher-yielding grass also requires less land to grow and can be planted in areas where other crops can't grow instead of in prime agricultural land. Ceres is conducting multi-year trials in Arizona, Texas, Tennessee, and Georgia which have already resulted in grass yields with as much as 50% more biomass than yields from current grass varieties.
Program: 
Project Term: 
12/22/2015 to 03/21/2017
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

The Citrine Informatics team is demonstrating a proof-of-concept for a system that would use experimental work to intelligently guide the investigation of new solid ionic conductor materials. If successful, the project will create a new approach to material discovery generally and new direction for developing promising ionic conductors specifically. The project will aggregate data (both quantitative and meta-data related to experimental conditions) relevant to ionic conductors from the published literature and build advanced, machine learning models for prediction based upon the resulting large database. The team's system will also experimentally explore the new materials space identified and suggested by the models. The Citrine project could provide researchers near-real-time feedback as they perform experiments, allowing them to dynamically select the most promising research pathways. This would in turn unlock more rapid ionic conductor identification and development, and transform the fields of theoretical and experimental materials science at-large.

Program: 
Project Term: 
07/01/2010 to 06/30/2012
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Codexis is developing new and efficient forms of enzymes known as carbonic anhydrases to absorb CO2 more rapidly and under challenging conditions found in the gas exhaust of coal-fired power plants. Carbonic anhydrases are common and are among the fastest enzymes, but they are not robust enough to withstand the harsh environment found in the power plant exhaust steams. In this project, Codexis will be using proprietary technology to improve the enzymes' ability to withstand high temperatures and large swings in chemical composition. The project aims to develop a carbon-capture process that uses less energy and less equipment than existing approaches. This would reduce the cost of retrofitting today's coal-fired power plants.
Program: 
Project Term: 
07/10/2014 to 07/09/2016
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Cogenra Solar is developing a hybrid solar converter with a specialized light-filtering mirror that splits sunlight by wavelength, allowing part of the sunlight spectrum to be converted directly to electricity with photovoltaics (PV), while the rest is captured and stored as heat. By integrating a light-filtering mirror that passes the visible part of the spectrum to a PV cell, the system captures and converts as much as possible of the photons into high-value electricity and concentrates the remaining light onto a thermal fluid, which can be stored and be used as needed. Cogenra's hybrid solar energy system also captures waste heat from the solar cells, providing an additional source of low-temperature heat. This hybrid converter could make more efficient use of the full solar spectrum and can provide inexpensive solar power on demand.
Electric Power Research Institute (EPRI)
Program: 
Project Term: 
08/19/2015 to 05/18/2019
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
The Electric Power Research Institute (EPRI) and its partners will design, fabricate, and demonstrate an indirect dry-cooling system that features a rotating mesh heat exchanger with encapsulated phase-change materials (PCMs) such as paraffin, which can absorb and reject heat efficiently. The novel system can be used downstream from a water-cooled steam surface condenser to cool water to a temperature near ambient air temperature, eliminating the need for a cooling tower. The team's design capitalizes on the high latent heat of the solid-to-liquid transition in the PCMs to provide an extremely effective way to lower the temperature of hot water exiting the condenser. The encapsulated PCMs are embedded in polymer tubes that form a porous, mesh-like structure. These modules are then mounted on a rotating system that continuously circulates the encapsulated PCMs from the hot water - where they absorb heat - into a dry section where ambient air passes by the encapsulated PCMs, causing the PCMs to solidify and reject heat to the atmosphere. The multidisciplinary team includes leading industry and academic partners that will provide technical and market assistance, and help build and test a 50 kWth prototype to demonstrate the technology's commercial viability.
Program: 
Project Term: 
02/28/2018 to 02/27/2020
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 

Empower Semiconductor will develop a new architecture for regulating voltage in integrated circuits (IC) like computer microprocessors. Empower's design will enable faster & more accurate power delivery than today's power management hardware. As transistors continue to shrink, the number of transistors per chip has increased, resulting in increased computing power. Existing Voltage Regulator ICs (VRICs) have not kept pace and deliver excessive (and wasted) power to these advanced digital ICs. The team has proposed a new resonant voltage regulator architecture based on silicon technology that can power digital ICs with 5x improved voltage regulation and 1,000x faster transient response. The increased regulation serves to eliminate excess voltage, which translates to significant energy savings. The dramatic increase in transient response enables dynamic voltage scaling which allows the digital IC to reduce its voltage within a few cycles when its full operation & voltage is not needed, thereby further conserving energy. If successful, these improvements in speed and accuracy translate to up to 50% reduction in energy consumption for a digital IC, while enabling a much smaller form factor and lower costs.

Program: 
Project Term: 
01/01/2010 to 12/31/2011
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
In a battery, metal ions move between the electrodes through the electrolyte in order to store energy. Envia Systems is developing new silicon-based negative electrode materials for Li-Ion batteries. Using this technology, Envia will be able to produce commercial EV batteries that outperform today's technology by 2-3 times. Many other programs have attempted to make anode materials based on silicon, but have not been able to produce materials that can withstand charge/discharge cycles multiple times. Envia has been able to make this material which can successfully cycle hundreds of times, on a scale that is economically viable. Today, Envia's batteries exhibit world-record energy densities.
Program: 
Project Term: 
02/19/2014 to 03/27/2015
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
EnZinc is developing a low-cost battery using 3D zinc microstructured sponge technology that could dramatically improve the rechargeability of zinc-based EV batteries. As a battery material, zinc is inexpensive and readily available, but presently unsuitable for long-term use in EVs. Current zinc based batteries offer limited cycle life due to the formation of tree-like internal structures (dendrites) that can short out the battery. To address this, EnZinc, in collaboration with the U.S. Naval Research Laboratory, will replace conventional zinc powder-bed anodes with a porous zinc sponge that thwarts formation of structures that lead to battery failure. EnZinc's technology will enable zinc-based batteries that accept high-power charge and discharge as required by EVs.
Program: 
Project Term: 
08/23/2017 to 08/22/2020
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 

Feasible will develop a non-invasive, low-cost, ultrasonic diagnostic system that links the electrochemical reactions taking place inside a battery with changes in how sound waves propagate through the battery. This Electrochemical Acoustic Signal Interrogation (EASI) analysis will bridge the gap in battery diagnostics between structural insights and electrical measurements, offering both speed and scalability. The physical processes of a battery that affect performance are nearly impossible to monitor with standard diagnostic methods. EASI can provide insights into the battery development, manufacturing, and management life cycle. This capability is enabled by acoustic analysis, which is a fundamentally new tool in its application to batteries, and will aid cell design and development, improve manufacturing quality and yield thereby decreasing cost, and decrease inefficiencies in battery utilization and system design. During a prior ARPA-E IDEAS award, Princeton University developed the proof of concept for this technology that linked the propagation of sound waves through a battery to the state of the material components within the battery. Now, as Feasible Inc., the team will further the development of their sensing techniques and build a database of acoustic signatures for different battery chemistries, form factors, and use conditions. If successful, this ultrasonic diagnostic system will lead to improved battery quality, safety, and performance of electric vehicle and grid energy storage systems via two avenues: (1) more thorough and efficient cell screening during production, and (2) physically relevant information to better inform battery management strategies.

Program: 
Project Term: 
09/01/2010 to 08/28/2013
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
General Atomics is developing a flow battery technology based on chemistry similar to that used in the traditional lead-acid battery found in nearly every car on the road today. Flow batteries store energy in chemicals that are held in tanks outside the battery. When the energy is needed, the chemicals are pumped through the battery. Using the same basic chemistry as a traditional battery but storing its energy outside of the cell allows for the use of very low-cost materials. The goal is to develop a system that is far more durable than today's lead-acid batteries, can be scaled to deliver megawatts of power, and which lowers the cost of energy storage below $100 per kilowatt hour.
Program: 
Project Term: 
01/09/2012 to 07/31/2013
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
General Atomics is developing a direct current (DC) circuit breaker that could protect the grid from faults 100 times faster than its alternating current (AC) counterparts. Circuit breakers are critical elements in any electrical system. At the grid level, their main function is to isolate parts of the grid where a fault has occurred--such as a downed power line or a transformer explosion--from the rest of the system. DC circuit breakers must interrupt the system during a fault much faster than AC circuit breakers to prevent possible damage to cables, converters and other grid-level components. General Atomics' high-voltage DC circuit breaker would react in less than 1/1,000th of a second to interrupt current during a fault, preventing potential hazards to people and equipment.
Program: 
Project Term: 
04/01/2013 to 03/31/2017
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

Glint Photonics is developing an inexpensive solar concentrating PV (CPV) module that tracks the sun's position over the course of the day to channel sunlight into PV materials more efficiently. Conventional solar concentrator technology requires complex moving parts to track the sun's movements. In contrast, Glint's inexpensive design can be mounted in a stationary configuration and adjusts its properties automatically in response to the solar position. By embedding this automated tracking function within the concentrator, Glint's design enables CPV modules to use traditional mounting technology and techniques, reducing installation complexity and cost. These self-tracking concentrators can significantly decrease the cost of solar power modules by enabling high efficiency while eliminating the additional costs of precision trackers and specialized mounting hardware. The concentrator itself is designed to be manufactured at extremely low-cost due to low material usage and compatibility with high-speed fabrication techniques. Glint's complete module costs are estimated to be $0.35/watt-peak.

Program: 
Project Term: 
01/01/2016 to 12/30/2019
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 
Glint Photonics in collaboration with the National Renewable Energy Laboratory (NREL), will develop a stationary wide-angle concentrator (SWAC) PV system. The SWAC concentrates light onto multi-junction solar cells, which efficiently convert sunlight into electrical energy. A sheet of arrayed PV cells moves passively within the module to maximize sunlight capture throughout the day. Two innovations allow this tracking to occur smoothly and without the expense or complexity of an active control system or a mechanical tracker. First, a fluidic suspension mechanism enables nearly frictionless movement of the sheet embedded in the module. Second, a thermal-gradient-driven alignment mechanism uses a tiny fraction of the collected energy to drive the movement of the sheet and keep it precisely aligned. Glint will develop the novel optical and fluidic components of the SWAC, while NREL will develop custom multi-junction solar cells for the prototype modules.
Program: 
Project Term: 
05/25/2016 to 05/24/2019
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

GridBright and Utility Integration Solutions (UISOL, a GE Company) will develop a power systems model repository based on state-of-the-art open-source software. The models in this repository will be used to facilitate testing and adoption of new grid optimization and control algorithms. The repository will use field-proven open-source software and will be made publicly available in the first year of the project. Key features of the repository include an advanced search capability to support search and extraction of models based on key research characteristics, faster model upload and download times, and the ability to support thousands of users. The team will establish a long-term strategy for managing the repository that will allow its operation to continue after its project term with ARPA-E ends.

Program: 
Project Term: 
02/15/2019 to 02/14/2022
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 
GridBright will develop a simple and secure solution for sharing grid-related data to improve grid efficiency, reliability, and resiliency in a manner that preserves security and integrity. GridBright will use the Agile development model to construct several proof-of-concept software pipelines, performing penetration and compromise testing and a quantitative evaluation of each against existing requirements. The solution will create a simpler secure grid data exchange process for the electric grid and utility industries.
Program: 
Project Term: 
01/01/2012 to 09/30/2015
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

Halotechnics is developing a high-temperature thermal energy storage system using a new thermal-storage and heat-transfer material: earth-abundant and low-melting-point molten glass. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night--when the sun is not out--to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Halotechnics new thermal storage material targets a price that is potentially cheaper than the molten salt used in most commercial solar thermal storage systems today. It is also extremely stable at temperatures up to 1200°C--hundreds of degrees hotter than the highest temperature molten salt can handle. Being able to function at high temperatures will significantly increase the efficiency of turning heat into electricity. Halotechnics is developing a scalable system to pump, heat, store, and discharge the molten glass. The company is leveraging technology used in the modern glass industry, which has decades of experience handling molten glass.

HRL Laboratories
Program: 
Project Term: 
03/07/2014 to 04/15/2018
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
HRL Laboratories will develop a high-performance, low-cost, vertical gallium nitride (GaN) transistor that could displace the silicon transistor technologies used in most high-power switching applications today. GaN transistors can operate at higher temperatures, voltages, and currents than their silicon counterparts, but they are expensive to manufacture. HRL will combine innovations in semiconductor material growth, device fabrication, and circuit design to create its high-performance GaN vertical transistor at a competitive manufacturing cost.
Program: 
Project Term: 
10/01/2010 to 06/30/2014
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
HRL Laboratories is using gallium nitride (GaN) semiconductors to create battery chargers for electric vehicles (EVs) that are more compact and efficient than traditional EV chargers. Reducing the size and weight of the battery charger is important because it would help improve the overall performance of the EV. GaN semiconductors process electricity faster than the silicon semiconductors used in most conventional EV battery chargers. These high-speed semiconductors can be paired with lighter-weight electrical circuit components, which helps decrease the overall weight of the EV battery charger. HRL Laboratories is combining the performance advantages of GaN semiconductors with an innovative, interactive battery-to-grid energy distribution design. This design would support 2-way power flow, enabling EV battery chargers to not only draw energy from the power grid, but also store and feed energy back into it.
Program: 
Project Term: 
02/24/2014 to 07/14/2014
Project Status: 
CANCELLED
Project State: 
California
Technical Categories: 
iMetalx is scaling up an advanced electrochemical process to produce low-cost titanium from domestic ore. While titanium is a versatile and robust structural metal, its widespread adoption for consumer applications has been limited due to its high cost of production. iMetalx is developing an new electrochemical titanium production process that avoids the cyclical formation of undesired titanium ions, thus significantly increasing the electrical current efficiency. iMetalx will test different cell designs, reduce unwanted side reactions to increase energy efficiency, and minimize the heat loss that occurs when processing titanium. By developing a scalable and stable electrochemical cell, iMetalx could significantly reduce the costs and energy consumption associated with producing titanium.
Program: 
Project Term: 
01/12/2018 to 01/11/2021
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 

Infineon Technologies will develop a new, low-cost integrated circuit (IC) gate driver specifically for use with gallium nitride (GaN) high electron mobility transistor (HEMT) switches. The GaN HEMT switches would be used as a component for controlling variable speed electric motors in variable speed drives (VSDs). Electric motors, which account for about 40% of U.S. electricity consumption, can be made substantially more efficient by replacing constant speed motors with variable speed motors. Most VSDs today use silicon-based semiconductors, which are limited in performance compared to those based on wide-bandgap semiconductors like GaN. Infineon plans to integrate a cost-effective gate driver IC together with GaN HEMT switches and simple packaging to enable a cost reduction by a factor of two or three, simplified integration, and significant energy savings. If successful, the technology may drive rapid adoption of variable speed control in residential and light commercial 50-200W appliance motors from fans and pumps to refrigeration and air conditioning compressors.

Jet Propulsion Laboratory (JPL)
Program: 
Project Term: 
04/30/2014 to 05/18/2016
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

NASA's Jet Propulsion Laboratory (JPL) is developing a new metal-hydride/air battery. Current electric vehicle batteries use costly components and require packaging and shielding to ensure safety. To address this, JPL's technology will incorporate safe, inexpensive, and high-capacity materials for both the positive and negative electrodes of the battery as part of a novel design. Additionally, JPL's design will use a membrane developed to prevent water loss and CO2 entry within the battery. High power performance and decreased costs will be possible with the use of a single catalyst material that operates both on charge and discharge. Since its new design is intrinsically safer, less packaging is needed, resulting in an overall reduction in weight and volume.

Program: 
Project Term: 
03/08/2013 to 10/01/2017
Project Status: 
CANCELLED
Project State: 
California
Technical Categories: 
Kohana Technologies is developing wind turbines with a control system that delivers compressed air from special slots located in the surface of its blades. The compressed air dynamically adjusts the aerodynamic performance of the blades, and can essentially be used to control lift, drag, and ultimately power. This control system has been shown to exhibit high levels of control in combination with an exceptionally fast response rate. The deployment of such a control system in modern wind turbines would lead to better management of the load on the system during peak usage, allowing larger blades to be deployed with a resulting increase in energy production.
Lawrence Berkeley National Laboratory (LBNL)
Program: 
Project Term: 
01/01/2012 to 03/26/2015
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Lawrence Berkeley National Laboratory (LBNL) is modifying tobacco to enable it to directly produce fuel molecules in its leaves for use as a biofuel. Tobacco is a good crop for biofuels production because it is an outstanding biomass crop, has a long history of cultivation, does not compete with the national food supply, and is highly responsive to genetic manipulation. LBNL will incorporate traits for hydrocarbon biosynthesis from cyanobacteria and algae, and enhance light utilization and carbon uptake in tobacco, improving the efficiency of photosynthesis so more fuel can be produced in the leaves. The tobacco-generated biofuels can be processed for gasoline, jet fuel, or diesel alternatives. LBNL is also working to optimize methods for planting, cultivating and harvesting tobacco to increase biomass production several-fold over the level of traditional growing techniques.
Lawrence Berkeley National Laboratory (LBNL)
Program: 
Project Term: 
07/22/2019 to 08/07/2022
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 
Lawrence Berkeley National Laboratory (LBNL) is developing a metal-supported SOFC (MS-SOFC) stack that produces electricity from an ethanol-water blend at high efficiency and energy density. This technology will enable light- to medium-duty hybrid passenger EVs to operate at a long range, with higher efficiency than gasoline vehicles and lower greenhouse gas (GHG) emissions than current vehicles. LBNL's MS-SOFCs are mechanically rugged: they can heat from room temperature to their approximately 700°C (1292 °F) operating temperature within a few minutes without cracking and tolerate rapid temperature changes. Usually, ethanol fuel is converted into hydrogen and carbon monoxide prior to entering the fuel cell, which adds volume, cost, and complexity. The team will adapt these MS-SOFCs to operate on liquid ethanol-water fuel directly, while maintaining their high performance and durability, and tackle challenges around scale-up.
Lawrence Berkeley National Laboratory (LBNL)
Program: 
Project Term: 
01/01/2014 to 12/31/2016
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Lawrence Berkeley National Laboratory (LBNL) is genetically engineering a bacterium called Methylococcus in order to produce an enzyme that binds methane with a common fuel precursor to create a liquid fuel. This process relies on methylation, a reaction that requires no oxygen or energy inputs but has never been applied to methane conversion." First, LBNL will construct a unique enzyme called a "PEP methylase" from an existing enzyme. The team will then bioengineer new metabolic pathways for assimilating methane and conversion to liquid fuels.
Lawrence Berkeley National Laboratory (LBNL)
Program: 
Project Term: 
09/01/2017 to 08/31/2018
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

Lawrence Berkeley National Laboratory (LBNL) will develop a high power density, rapid-start, metal-supported solid oxide fuel cell (MS-SOFC), as part of a fuel cell hybrid vehicle system that would use liquid bio-ethanol fuel. In this concept, the SOFC would accept hydrogen fuel derived from on-board processing of the bio-ethanol and air, producing electricity to charge an on-board battery and operate the motor. The project aims to develop and demonstrate cell-level MS-SOFC technology providing unprecedented high power density and rapid start capability initially using hydrogen and simulated processed ethanol fuels. The majority of the project will focus on the optimization and development of scalable cells that meet stringent power density and start-up time metrics. High-performance catalysts and state-of-the-art high-oxide-conductivity electrolyte materials will be adapted to the MS-SOFC architecture and processing requirements. The cell will be optimized for power density by making the electrolyte and support layers as thin as possible, and the porous electrode structures will be optimized for catalytic activity, gas transport, and conductivity. If successful, the MS-SOFC will be used in a fuel cell stack to achieve low startup time (less than 3 minutes), thousands of operating cycles, and excellent anode oxidation tolerance thus solving issues that have prevented conventional SOFCs from being used effectively in vehicles.

Lawrence Berkeley National Laboratory (LBNL)
Program: 
Project Term: 
06/12/2017 to 06/11/2020
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 

Lawrence Berkeley National Laboratory (LBNL) will develop an imaging-modeling toolbox to aid in the development of more efficient crops at field scales. The approach is based on a root phenotyping method called Tomographic Electrical Rhizosphere Imaging (TERI). TERI works by applying a small electrical signal to a plant, then measuring the impedance responses through the roots and correlating those responses to root and soil properties. Key target traits of the LBNL project include root mass, root surface area, rooting depth, root distribution in soil, and soil moisture content and texture. The TERI technology will be sensitive enough to distinguish between various plant varieties. The process is minimally invasive, and by doing repeated TERI measurements over the growing season, critical root architectural traits and their dynamic changes over time can be quantified for a range of soil conditions. From laboratory studies, LBNL and its partners will integrate hardware and software tools to develop a field deployable instrument based on the TERI technology. LBNL is partnered with the Noble Foundation to apply the TERI technology to wheat breeding and identify wheat varieties with improved root characteristics, and also link visible above-ground phenotypes with the desired root characteristics. The team will utilize the TERI technology to characterize plants in both controlled laboratory and field studies, and use the data generated to improve ecological models predicting plant performance in the environment.

Lawrence Berkeley National Laboratory (LBNL)
Program: 
Project Term: 
02/21/2019 to 02/20/2022
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 

LBNL will use advanced microfabrication technology to build and scale low-cost, compact, higher-power multi-beam ion accelerators. These accelerators will be able to increase the ion current up to 100 times, helping to enable a new learning curve for compact accelerator technology. MEMS (micro-electro mechanical systems) technology enables massively parallel, low-cost batch fabrication of ion beam accelerators. The team proposes to scale ion accelerators based on MEMS to higher beam power and pack hundreds to thousands of ion beamlets on silicon wafers. Ions will be injected and accelerated across the gaps formed in stacks of wafers, leading to high-current densities for ion accelerators. MEMS-based batch fabrication will reduce the size, weight, power and cost of ion accelerators more than tenfold, enabling low-cost, rapid testing and development of radiation-hard materials for advanced nuclear energy and new applications in manufacturing.

Lawrence Berkeley National Laboratory (LBNL)
Program: 
Project Term: 
07/16/2010 to 12/31/2014
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

Lawrence Berkeley National Laboratory (LBNL) is improving the natural ability of a common soil bacteria called Ralstonia eutropha to use hydrogen and carbon dioxide for biofuel production. First, LBNL is genetically modifying the bacteria to produce biofuel at higher concentrations. Then, LBNL is using renewable electricity obtained from solar, wind, or wave power to produce high amounts of hydrogen in the presence of the bacteria--increasing the organism's access to its energy source and improving the efficiency of the biofuel-creation process. Finally, LBNL is tethering electrocatalysts to the bacteria's surface which will further accelerate the rate at which the organism creates biofuel. LBNL is also developing a chemical method to transform the biofuel that the bacteria produce into ready-to-use jet fuel.

Lawrence Berkeley National Laboratory (LBNL)
Program: 
Project Term: 
08/01/2015 to 06/30/2018
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
LBNL, in coordination with Cornell University, will develop a driver for magneto-inertial fusion based on ion beam technology that can be manufactured with low-cost, scalable methods. Ion beams are commonly used in research laboratories and manufacturing, but currently available technology cannot deliver the required beam intensities at low enough cost to drive an economical fusion reactor. LBNL will take advantage of microelectromechanical (MEMS) technology to develop a design consisting of thousands of mini ion "beamlets" densely packed on silicon wafers - up to thousands of beamlets per 4 to 12 inch wafer. Ions will be accelerated using radio-frequency driven accelerators, resulting in extremely high current densities and high-intensity ion beams that can be focused on plasma targets to achieve fusion. The use of MEMS technology enables low-cost batch fabrication, which could reduce the overall cost of a fusion reactor, in addition to enabling drivers that are modular and scalable. If successful, this project will result in an economical and flexible ion beam driver technology for magneto-inertial fusion reactors.
Lawrence Berkeley National Laboratory (LBNL)
Program: 
Project Term: 
10/01/2010 to 09/30/2013
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Lawrence Berkeley National Laboratory (LBNL) is designing a flow battery for grid storage that relies on a hydrogen-bromine chemistry which could be more efficient, last longer, and cost less than today's lead-acid batteries. Flow batteries are fundamentally different from traditional lead-acid batteries because the chemical reactants that provide their energy are stored in external tanks instead of inside the battery. A flow battery can provide more energy because all that is required to increase its storage capacity is to increase the size of the external tanks. The hydrogen-bromine reactants used by LBNL in its flow battery are inexpensive, long lasting, and provide power quickly. The cost of the design could be well below $100 per kilowatt hour, which would rival conventional grid-scale battery technologies.
Lawrence Berkeley National Laboratory (LBNL)
Program: 
Project Term: 
07/28/2017 to 07/27/2020
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 

Lawrence Berkeley National Laboratory (LBNL) will develop a field-deployable instrument that can measure the distribution of carbon in soil using neutron scattering techniques. The system will use the Associated Particle Imaging (API) technique to determine the three-dimensional carbon distribution with a spatial resolution on the order of several centimeters. A compact, portable neutron generator emits neutrons that excite carbon and other nuclei. The excited carbon isotopes emit gamma rays that can be detected above the ground with spectroscopic detectors and used as a proxy to estimate the amount of carbon in the soil. Neutron exposure at the applied rates from the instrument will not damage plants or affect their growth rates, and protocols for safe operation of the system will be developed in consultation with radiation health personnel. The advantage of API is that it can spatially map the carbon distribution in soil more accurately than other imaging methods that heavily favor the top layers of soil. The spatial resolution of API will allow the measurement of changes in carbon fraction related to depth and changes associated with plant root architecture and soil porosity. Since repeated measurements are possible over the growing season, the API system will provide a bridge to understanding soil carbon sequestration. If successful, API data will enable the optimization of soil management practices as well as the opportunity to optimize plants for specific traits, such as larger root mass, and deeper roots.

Lawrence Livermore National Laboratory (LLNL)
Program: 
Project Term: 
09/01/2019 to 08/31/2020
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 
Lawrence Livermore National Laboratory (LLNL)
Program: 
Project Term: 
08/15/2010 to 12/31/2014
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Lawrence Livermore National Laboratory (LLNL) is designing a process to pull CO2 out of the exhaust gas of coal-fired power plants so it can be transported, stored, or utilized elsewhere. Human lungs rely on an enzyme known as carbonic anhydrase to help separate CO2 from our blood and tissue as part of the normal breathing process. LLNL is designing a synthetic catalyst with the same function as this enzyme. The catalyst can be used to quickly capture CO2 from coal exhaust, just as the natural enzyme does in our lungs. LLNL is also developing a method of encapsulating chemical solvents in permeable microspheres that will greatly increase the speed of binding of CO2. The goal of the project is an industry-ready chemical vehicle that can withstand the harsh environments found in exhaust gas and enable new, simple process designs requiring less capital investment.
Lawrence Livermore National Laboratory (LLNL)
Program: 
Project Term: 
10/01/2012 to 09/30/2015
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

Lawrence Livermore National Laboratory (LLNL) is developing a wireless sensor system to improve the safety and reliability of lithium-ion (Li-Ion) battery systems by monitoring key operating parameters of Li-Ion cells and battery packs. This system can be used to control battery operation and provide early indicators of battery failure. LLNL's design will monitor every cell within a large Li-Ion battery pack without the need for large bundles of cables to carry sensor signals to the battery management system. This wireless sensor network will dramatically reduce system cost, improve operational performance, and detect battery pack failures in real time, enabling a path to cheaper, better, and safer large-scale batteries.

Magneto-Inertial Fusion Technologies, Inc. (MIFTI)
Program: 
Project Term: 
10/01/2015 to 03/31/2019
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
MIFTI is developing a new version of the Staged Z-Pinch (SZP) fusion concept that reduces instabilities in the fusion plasma, allowing the plasma to persist for longer periods of time. The Z-Pinch is an approach for simultaneously heating, confining, and compressing plasma by applying an intense, pulsed electrical current which generates a magnetic field. While the simplicity of the Z-Pinch is attractive, it has been plagued by plasma instabilities. MIFTI's SZP plasma target consists of two components with different atomic numbers and is specifically configured to reduce instabilities. When the heavier component collapses around the lighter part, a shock front develops that travels faster than instabilities can grow, allowing the plasma to remain stable, long enough for fusion to occur. The approach also allows researchers to perform experiments in rapid succession, since it does not involve single-use components. MIFTI's design simplifies the engineering required for fusion through its efficiency and reduced number of components.
Program: 
Project Term: 
09/01/2010 to 10/16/2013
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Makani Power is developing an Airborne Wind Turbine that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.
Program: 
Project Term: 
06/06/2016 to 04/15/2020
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 

The team led by Marine BioEnergy will develop an open ocean cultivation system for macroalgae biomass, which can be converted to biocrude. Giant kelp is one of the fastest growing sources of biomass, and the open ocean surface water is an immense, untapped region for growing kelp. However, kelp does not grow in the open ocean because it needs to attach to a hard surface, typically less than 40 meters deep. Kelp also needs nutrients that are only available in deep water or near shore but not on the surface of the open ocean. To overcome these obstacles, the team proposes to build inexpensive underwater drones that will tow large grids, to which the kelp is attached. These autonomous drones will be capable of towing the farms from sunlight-rich surface water during the day to nutrient-rich deep water during the night, and will submerge the farms to avoid storms and passing ships. A prerequisite for this vision will be successful demonstration of depth-cycling kelp plants from the surface to the deep ocean. Working with researchers at the University of Southern California, Wrigley Institute for Environmental Studies, Marine BioEnergy will develop and deploy first-of-kind technology to assess and apply this unique concept of kelp depth-cycling for deep water nutrient uptake to kelp production. Researchers at Pacific Northwest National Laboratory will convert this kelp to biocrude and document the quality. This technology could enable large-scale energy crop production in many regions of the open ocean, with an initial focus on the U.S. Exclusive Economic Zone off California.

Material Methods
Program: 
Project Term: 
09/15/2010 to 09/21/2011
Project Status: 
CANCELLED
Project State: 
California
Technical Categories: 
Material Methods is developing a heat pump technology that substitutes the use of sound waves and an environmentally benign refrigerant for synthetic refrigerants found in conventional heat pumps. Called a thermoacoustic heat pump, the technology is based on the fact that the pressure oscillations in a sound wave result in temperature changes. Areas of higher pressure raise temperatures and areas of low pressure decrease temperatures. By carefully arranging a series of heat exchangers in a sound field, the heat pump is able to isolate the hot and cold regions of the sound waves. This technology is environmentally safe, and the simplicity of the mechanical system creates efficiencies that make the system cost competitive with traditional refrigerant-based systems.
Program: 
Project Term: 
06/21/2018 to 06/20/2020
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 

Matrix Sensors and its partners will develop a low-cost CO2 sensor module that can be used to enable better control of ventilation in commercial buildings. Matrix Sensor's module uses a solid-state architecture that leverages scalable semiconductor manufacturing processes. Key to this architecture is a suitable sensor material that can selectively adsorb CO2, release the molecule when the concentration decreases, and complete this process quickly to enable real-time sensing. The team's design will use a new class of porous materials known as metal-organic frameworks (MOFs). MOFs possess high gas uptake properties, molecule selectivity and high stability. As the MOF adsorbs and desorbs CO2, a connected transducer detects the change in mass. Beyond developing the MOF, key goals for the team include developing capable transducers for the MOF gas sensor, as well as the development of wireless sensor module which will be self-contained including the sensor element, micro-processor, battery, and wireless interface. The sensor will be wall-mounted and easily installed since it will not require wired power. If successful, the project will result in a CO2 sensor system with a total cost of ownership that is 5 to 10x lower than today's systems.

Program: 
Project Term: 
01/01/2010 to 10/14/2011
Project Status: 
CANCELLED
Project State: 
California
Technical Categories: 

NanOasis Technologies is developing better membranes to filter salt from water during the reverse osmosis desalination process. Conventional reverse osmosis desalination processes pump water through a thin film membrane to separate out the salt. However, these membranes only provide modest water permeability, making the process highly energy intensive and expensive. NanOasis is developing membranes that consist of a thin, dense film with carbon nanotube pores that significantly enhance water transport, while effectively excluding the salt. Water can flow through the tiny pores of these carbon nanotubes quickly and with less pressure, drastically reducing the overall energy use and cost of the desalination process. In addition, NanOasis' technology was purported to not require any modifications to existing desalination plants, so it could be easily deployed.

NanoConversion Technologies
Program: 
Project Term: 
11/16/2015 to 12/02/2016
Project Status: 
CANCELLED
Project State: 
California
Technical Categories: 
NanoConversion Technologies, along with researchers from Gas Technologies Institute (GTI), will develop a high-efficiency thermoelectric CHP system. This is a solid-state device that uses heat to create electricity and contains no moving parts, thus creating no noise or vibrations. Instead, this thermoelectric CHP engine uses a novel concentration mode-thermoelectric converter (C-TEC) to harness the heat of the natural gas combustor to vaporize and ionize sodium, creating positive sodium ions and electrons that carry electric current. The C-TEC uses this sodium expansion cycle to produce electricity using an array of electrochemical cells. The superadiabatic combustor technology from GTI provides a low emission external combustion heat source with 95% fuel-to-heat efficiency and a stable temperature compatible with the C-TEC units.
Program: 
Project Term: 
10/01/2016 to 02/01/2019
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

NanoSD, with its partners will develop a transparent, nanostructured thermally insulating film that can be applied to existing single-pane windows to reduce heat loss. To produce the nanostructured film, the team will create hollow ceramic or polymer nanobubbles and consolidate them into a dense lattice structure using heat and compression. Because it is mostly air, the resulting nanobubble structure will exhibit excellent thermal barrier properties. The film can be transparent because the nanostructures are too small to be seen, but achieving this transparency needs processing innovations for assembling the film. The film should also be lightweight, flexible, fire/chemical resistant, soundproof, and condensation resistant. The nanobubble film will be integrated with a low emissivity layer to achieve the final insulating performance. The team will use cost-effective processing and assembly technologies to manufacture its window coating at a cost less than $5 per square foot.

Northrop Grumman Aerospace Systems
Program: 
Project Term: 
06/15/2014 to 08/04/2016
Project Status: 
CANCELLED
Project State: 
California
Technical Categories: 
Northrop Grumman Aerospace Systems is developing a dish-shaped sunlight-concentrating hybrid solar converter that integrates high-efficiency solar cells and a thermo-acoustic engine that generates electricity directly from heat. Current solar cells lose significant amounts of energy as heat, because they do not have heat storage capability. By integrating a high-temperature solar cell and thermo-acoustic engine into a single system, thermal energy losses are minimized. The thermo-acoustic unit, which was originally designed for space missions, converts waste heat from the solar cell into sound waves to generate electricity using as few moving parts as possible. The engine and solar cell are connected to a molten salt thermal storage unit to store heat when the sun shines and to release the heat and make electricity when the sun is not shining. Northrop Grumman's system could efficiently generate electricity more cheaply than existing solar power plants and lead to inexpensive, on-demand electricity from solar energy.
Program: 
Project Term: 
01/17/2018 to 01/16/2021
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 

Opcondys will develop a high-voltage power converter design for energy storage systems connected directly to the power grid. Opcondys' converter design will use a modified switched multiplier topology that will allow connection to utility transmission lines without intervening step-up transformers. It uses a photonic, wide bandgap power switching device called the Optical Transconductance Varistor. This is a fast, high-voltage, bidirectional device which reduces the number of circuit elements required for charging and discharging the storage element. By operating at 100 kHz it is possible to increase efficiency to 99% compared to 95-98% efficiency of traditional converters. The system also reduces the size of the passive elements by 50% and, because of the optical control, mitigates electromagnetic interference issues. The elimination of step-up transformers further reduces system size, and can enable a lower cost than existing systems. If successful, project developments could open the door to increased integration of grid-level energy storage.

Program: 
Project Term: 
06/16/2017 to 10/31/2018
Project Status: 
CANCELLED
Project State: 
California
Technical Categories: 

Opus 12 will develop a cost effective, modular reactor to electrochemically convert CO2 to ethanol in one step using water, air, and renewable electricity. Electrochemical reduction of CO2 has been demonstrated in laboratories to produce different fuels and chemicals, but these technologies do not provide efficient conversions and can only be executed in non-economical reactors. The Opus 12 team will integrate its novel cathode layer formulation, containing CO2 reducing catalysts and a polymer electrolyte, into an existing proton exchange membrane (PEM) electrolyzer architecture. Their unique polymer-electrolyte blend used in the cathode catalyst layer acts to minimize competing reactions by controlling the pH at the active sites. Currently, PEM electrolyzers are limited to hydrogen production, but the team's approach expands their use to include high-efficiency ethanol synthesis. PEM electrolyzers are also a well-established technology and integrating them into an existing reactor architecture reduces system capital costs and scale-up risk. PEM electrolyzers can also ramp quickly, allowing the use of intermittent, low-cost renewable electricity. They operate at high current density, leading to a small footprint, and they are operationally simple, with no need for specialized operators on site. The team's system will operate at less than 80°C and near atmospheric pressure with a coproduct of pure oxygen. The team's pilot reactor will be one of the first examples of a PEM electrolysis system used to generate a liquid fuel directly.

Program: 
Project Term: 
03/01/2017 to 03/19/2018
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

Otherlab will develop an open-source tool to enable higher resolution investigation and visualization of energy flows throughout the country. The core visual component is an interactive Sankey diagram with an intuitive interface that will allow users to examine the flows of energy and materials by industry, region, and economic sector. Behind the visualizations, sophisticated algorithms will aggregate and reconcile data from a wide variety of publically available sources in various formats to present an integrated view of energy and material imports, exports, and flows in the U.S. economy. The project's aim is to characterize these flows to an unprecedented resolution of 0.1% of the U.S. energy economy. The tool will incorporate both the specificity and comprehensiveness necessary to aid decision makers across the energy industry in identifying opportunities and planning energy research and technology development. By maintaining the tool in an open-source format, developers from across the country can assist in providing additional input on data sources, processing algorithms, and visualizations to improve accuracy and usability. Producing the open-source visualization tool will require three interdependent tasks. First, energy data will be collected, verified, and prepared for use. Next, the team will conduct user interface work and usability studies to ensure that the output reaches the broadest audience in the most useful manner. Finally, the team will pursue its final implementation as a web-based tool.

Program: 
Project Term: 
05/08/2015 to 11/07/2019
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 

Otherlab will develop thermally adaptive materials that change their thickness in response to temperature changes, allowing the creation of garments that passively respond to variations in temperature. In contrast to existing garments that have a constant insulation value whether conditions are hot or cold, thermally adaptive materials change shape as temperature changes, leading to a change in insulation. The material change is a physical response, passively operating and requiring no input from the wearer or any control system. Garments made from thermally adaptive fabrics will enable the wearing of fewer layers of clothing for comfort over a broader temperature range, effectively lowering the heating and cooling requirements for buildings. Beyond apparel, this advanced insulation may find applications in drapery and bedding.

Program: 
Project Term: 
02/19/2013 to 09/30/2017
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

Otherlab is developing an inexpensive small mirror system with an innovative drive system to reflect sunlight onto concentrating solar power towers at greatly reduced cost. This system is an alternative to expensive and bulky 20-30 foot tall mirrors and expensive sun-tracking drives used in today's concentrating solar power plants. In order for solar power tower plants to compete with conventional electricity generation, these plants need dramatic component cost reductions and lower maintenance and operational expenses. Otherlab's approach uses a smaller modular mirror design that reduces handling difficulty, suffers less from high winds, and allows the use of mass manufacturing processes for low-cost component production. These mirrors can be driven by mechanisms that utilize simpler, more readily serviceable parts which decreases system downtime and efficiency. The incorporation of low-cost and highly-scalable manufacturing approaches could significantly reduce the cost of solar electricity generation below conventional solar tower plant technologies.

Program: 
Project Term: 
02/19/2019 to 02/17/2020
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 
Program: 
Project Term: 
09/03/2012 to 03/31/2016
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

Otherlab is developing a natural gas storage tank made of small-radius, high-pressure tubes that allow for maximum conformability to vehicle shape. Current storage options are too rigid, expensive, and inefficient to support adoption of natural gas vehicles. Otherlab's space-filling tube design, modeled after human intestines, provides for maximum storage capacity. This transformational system could be constructed from low-cost materials and well suited to highly automated manufacturing processes.

Palo Alto Research Center (PARC)
Program: 
Project Term: 
12/29/2015 to 03/31/2019
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Palo Alto Research Center (PARC), along with Sandia National Laboratory (SNL) will develop a prototype printer with the potential to enable economical, high-volume manufacturing of micro-PV cell arrays. This project will focus on creating a printing technology that can affordably manufacture micro-CPV system components. The envisioned printer would drastically lower assembly costs and increase manufacturing efficiency of micro-CPV systems. Leveraging their expertise in digital copier assembly, PARC intends to create a printer demonstration that uses micro-CPV cells or "chiplets" as the "ink" and arranges the chiplets in a precise, predefined location and orientation, similar to how a document printer places ink on a page. SNL will provide micro-scaled photovoltaic components to be used as the "ink," and the PARC system will "print" panel-sized micro-CPV substrates with digitally placed and interconnected PV cells. This micro-chiplet printer technology may reduce the assembly cost of micro-CPV systems by orders of magnitude, making them cost competitive with conventional FPV. To demonstrate the effectiveness of the printer, the project team will investigate two types of backplanes (electronically connected PV arrays arranged on a surface): one with a single type of micro-PV cell, and one with at least two types of micro-PV cells.
Program: 
Project Term: 
12/12/2013 to 05/31/2016
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Palo Alto Research Center (PARC) is developing an advanced diagnostic probe that identifies the composition of light metal scrap for efficient sorting and recycling. Current sorting technologies for light metals are costly and inefficient because they cannot distinguish between different grades of light metals for recycling. Additionally, state-of-the-art electrochemical probes rely on aqueous electrolytes that are not optimally suited for separating light metal scrap. PARC's probe, however, uses a novel liquid, which enables a chemical reaction with light metals to represent their alloy composition accurately. A probe that is more accurate than existing methods could separate scrap based on alloy quality to obtain low-cost, high-quality aluminum.
Palo Alto Research Center (PARC)
Program: 
Project Term: 
12/17/2015 to 03/31/2017
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Palo Alto Research Center (PARC) is developing high performance, low-cost thermoelectric devices on flexible substrates that will enable the capture of low-temperature waste heat (100°C to 250°C), an abundant and difficult-to-harness energy resource. PARC's innovative manufacturing process is based on their co-extrusion printing technology which can simultaneously deposit different materials at high speed thereby facilitating fast, large-area production at low cost. Flexible thermoelectric devices will broaden their utility to applications on non-flat surfaces such as wrapping heat transfer piping. Additionally, since thermoelectrics can be applied directly onto most waste heat sources, expensive heat exchangers to transfer heat to a generator are unnecessary. PARC's existing co-extrusion printing technology, paired with partner Novus Energy's nanomaterials, is uniquely suited for the development of Large Area Thermoelectric Generator (LATEG) technology on flexible substrates, as it allows for the optimization of microscale device structures while maintaining the nanoscale properties of the materials through a process that is scalable to low cost, large-area manufacturing. If successful, development and deployment of efficient flexible thermoelectric technologies would enable recapture of a large amount of wasted energy in the U.S. industrial sector.
Program: 
Project Term: 
12/28/2015 to 07/27/2018
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

Palo Alto Research Center (PARC) will develop its COPTER system to identify the energy-efficient routes most likely to be adopted by a traveler. PARC's system model will use currently available data from navigation tools, public transit, and intelligent transportation systems to simulate the Los Angeles transportation network and its energy use. For its control architecture, PARC will leverage its expertise in behavioral modeling and use machine-learning algorithms to predict the near-time travel needs of users, their constraints, and how likely they are to respond to suggested travel options. The system would send users recommendations for energy-efficient trips before departure, and could provide real-time guidance to users if adjustments in a trip need to be made to account for traffic or other unexpected interruptions. Unlike existing platforms, PARC's technology will be able to optimize for multiple travelers at the same time, organized by their most likely corridors of travel. This would prevent travelers from all pursuing the same alternative, which could cause additional traffic, and would also create dynamic ride-sharing options. By improving travelers' quality of service, PARC believes no further incentives are needed to encourage users to adopt the suggestions pushed to their smartphone.

Program: 
Project Term: 
03/01/2013 to 06/11/2014
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Palo Alto Research Center (PARC) is developing a new way to manufacture Li-Ion batteries that reduces manufacturing costs and improves overall battery performance. Traditionally, Li-Ion manufacturers make each layer of the battery separately and then integrate the layers together. PARC is working to manufacture a Li-ion battery by printing each layer simultaneously into an integrated battery, thereby streamlining the manufacturing process. Additionally, the battery structure includes narrow stripes inside the layers that increase the battery's overall energy storage. Together, these innovations should allow the production of higher capacity batteries at dramatically lower manufacturing costs compared to today's Li-ion batteries.
Program: 
Project Term: 
05/11/2015 to 09/30/2018
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

Palo Alto Research Center (PARC) will work with BP and NASA's Ames Research Center to combine Xerox's low-cost print manufacturing and NASA's gas-sensing technologies to develop printable sensing arrays that will be integrated into a cost-effective, highly sensitive methane detection system. The system will be based on sensor array foils containing multiple printed carbon nanotube (CNT) sensors and supporting electronics. Each sensor element will be modified with dopants, coatings, or nanoparticles such that it responds differently to different gases. Through principal component analysis and machine learning techniques, the system will be trained for high sensitivity and selectivity for components of natural gas and interfering compounds. The goal is to be able to detect methane emissions with a sensitivity of 1 ppm and localize the source of emissions to within 1 meter, offering enhanced precision when compared to current equipment. By using low-cost printing techniques, the project team's system could offer an affordable alternative to more expensive optical methane detectors on the market today.

Program: 
Project Term: 
10/01/2012 to 03/06/2017
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

Palo Alto Research Center (PARC) is developing new fiber optic sensors that would be embedded into batteries to monitor and measure key internal parameters during charge and discharge cycles. Two significant problems with today's best batteries are their lack of internal monitoring capabilities and their design oversizing. The lack of monitoring interferes with the ability to identify and manage performance or safety issues as they arise, which are presently managed by very conservative design oversizing and protection approaches that result in cost inefficiencies. PARC's design combines low-cost, embedded optical battery sensors and smart algorithms to overcome challenges faced by today's best battery management systems. These advanced fiber optic sensing technologies have the potential to dramatically improve the safety, performance, and life-time of energy storage systems.

Program: 
Project Term: 
05/01/2019 to 04/30/2021
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 
The Palo Alto Research Center (PARC) will develop an electrochemical ammonia generator capable of using intermittent energy delivered by renewable sources. The team will build an electrochemical device based on a solid-state electrolyte that converts nitrogen from the air and hydrogen to ammonia in a single step at temperatures and pressures far lower than today's dominant ammonia production technology, the Haber-Bosch process. The system will be modular and readily scalable, decoupling production cost from scale and allowing it to produce ammonia for diverse customers, from industry to farms and beyond.
Program: 
Project Term: 
06/21/2019 to 12/20/2022
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 
Palo Alto Research Center (PARC)
Program: 
Project Term: 
12/08/2016 to 12/07/2019
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

Palo Alto Research Center (PARC) and its partners are developing a low-cost, transparent thermal barrier, consisting of a polymer aerogel, to improve insulation in single-pane windows. The proposed high-performance thermal barrier is anticipated to achieve ultra-low thermal conductivity, while offering mechanical robustness and the visual appearance of clear glass. Additionally, the thermal barrier's synthesis is scalable and thus amenable to high volume manufacturing. The envisioned replacement windowpane is a tri-layer stack consisting of the aerogel, glass, and a low-emissivity coating - an architecture designed to improve the window's energy efficiency, condensation resistance, user comfort, and soundproofing. In this project, PARC will optimize the transparent polymer aerogel synthesis process; Blueshift will scale up fabrication to a 12-inch roll-to-roll pilot process; and Pilkington will evaluate the windowpane performance and durability. At the completion of the project, the aerogel will be integrated in a 12" x 12" windowpane prototype with commercial-off-the-shelf float glass, adhesives, and coatings. The final product will be a windowpane of similar weight and thickness to existing single panes. Based on current raw material and manufacturing costs, PARC foresees that this integrated windowpane can be manufactured at a low cost of $9/ft2.

Palo Alto Research Center (PARC)
Program: 
Project Term: 
10/01/2014 to 03/15/2016
Project Status: 
CANCELLED
Project State: 
California
Technical Categories: 
Palo Alto Research Center (PARC) is developing an intermediate-temperature fuel cell that is capable of utilizing a wide variety of carbon-based input fuels such as methane, butane, propane, or coal without reformation. Current fuel cell technologies require the use of a reformer - which turns hydrocarbon fuels into hydrogen and can generate heat and produce gases. PARC's design will include a novel electrolyte membrane system that doesn't have a methane-to-hydrogen reformer, and transports oxygen in a form that allows it to react directly with almost any fuel. This new membrane system eliminates the need for a separate fuel processing system all while reducing overall costs. PARC's fuel cell will also operate at relatively low temperatures of 200-300ºC which allows it to use less expensive materials and maintain durability. With the use of these materials, the fuel cell system avoids the long-term durability problems associated with existing higher-temperature fuel cells, all while reducing overall costs.
Palo Alto Research Center (PARC)
Program: 
Project Term: 
08/06/2015 to 05/05/2017
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Palo Alto Research Center (PARC), working with SPX Cooling Technologies, is developing a low-cost, passive radiative cooling panel for supplemental dry cooling at power plants. PARC's envisioned end product is a cooling module, consisting of multiple radiative cooling panels tiled over large, enclosed water channels that carry water from an initial cooling system, such as a dry-cooling tower. The cooling panel consists of a two-layer structure in which a reflective film sits atop a unique metamaterial-based emitter. In this architecture, the top layer completely reflects sunlight while the bottom layer effectively emits infrared radiation through a spectral window in the earth's atmosphere. This combination enables radiative cooling of the water even in full illumination by the sun. The cooling panel will be made using a lithography-free process compatible with roll-to-roll fabrication. In a large-scale system, the water temperature at the outlet of the cooling module is expected to be 8oC cooler than the temperature of the water at the inlet, which will result in a 3% efficiency gain for the power plant.
Program: 
Project Term: 
01/15/2016 to 04/14/2019
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Panasonic Boston Laboratory will develop a micro-CPV system that features a micro-tracking subsystem. This micro-tracking subsystem will eliminate the need for bulky trackers, allowing fixed mounting of the panel. The micro-tracking allows individual lenses containing PV cells to move within the panel. As the sun moves throughout the day, the lenses align themselves to the best position to receive sunlight, realizing the efficiency advantages of CPV without the cumbersome tilting of the entire panel. The Panasonic Boston Laboratory team will examine a number of methods to allow the individual lenses to track the sunlight. Each panel will be comparable in thickness and cost to a traditional FPV panel.
Program: 
Project Term: 
08/12/2019 to 08/11/2022
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 
PingThings will develop a national infrastructure for analytics and artificial intelligence (AI) on the power grid using a three-pronged approach. First, a scalable, cloud-based platform will store, process, analyze, and visualize grid sensor data. Second, massive open and accessible datasets will be created through (a) deploying grid sensors to capture wide-scale and localized grid behavior, (b) simulating and executing grid models to generate virtual sensor data, and (c) establishing a secure data exchange mechanism. Third, a diverse research community will be developed through focused educational content, online code sharing, and data and AI competitions. The project's goal is to accelerate the development of data-driven use cases to improve grid operation and analysis.
Program: 
Project Term: 
06/21/2019 to 06/20/2023
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 
Pinnacle Engines will develop a highly efficient hybrid electric engine that, if successful, will significantly reduce petroleum consumption and carbon dioxide emissions in the U.S. Adding a unique electric powertrain to Pinnacle's four-stroke, spark-ignited, opposed-piston sleeve-valve engine technology enables a fundamental leap forward in fuel efficiency. Electric motor-generators on each crankshaft will improve engine efficiency by modifying and optimizing the piston motion and resulting combustion process. Pinnacle will also evaluate direct fuel injection, high rates of exhaust gas recirculation, and a low-temperature combustion strategy, which will improve knock tolerance and reduce heat loss, pumping work, and nitrogen oxide emissions. Pinnacle's proposed engine technology will reduce fuel consumption and produce lower net greenhouse gases in a cost-effective manner when compared with current generation internal combustion engines and full-hybrid electric vehicles.
Program: 
Project Term: 
01/20/2017 to 07/18/2021
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 

PolyPlus Battery Company, in collaboration with SCHOTT Glass, will develop flexible, solid-electrolyte-protected lithium metal electrodes made by the lamination of lithium metal foil to thin solid electrolyte membranes that are highly conductive. Past efforts to improve lithium cycling by moving to solid-state structures based on polycrystalline ceramics have found limited success due to initiation and propagation of dendrites, which are branchlike metal fibers that short-circuit battery cells. A major benefit of the PolyPlus concept is that the lithium electrode is bonded to a "nearly flawless" glass surface which is devoid of grain boundaries or sufficiently large surface defects through which dendrites can initiate and propagate. These thin and flexible solid electrolyte membranes will be laminated to lithium metal foils, which can then be used to replace the graphite electrode and separators in commercial Li-ion batteries. The team's approach is based on electrolyte films made by commercial melt processing techniques, and they will work in close cooperation to develop compositions and processes suitable for high-volume, low-cost production of the lithium/glass laminate. The SCHOTT team will focus on glass composition and its relationship to physical properties while the PolyPlus team will determine electrochemical properties of the glass and provide this information to SCHOTT to further refine the glass composition. PolyPlus will also develop the Li/glass lamination process and work with the SCHOTT team on manufacturing and scale-up using high volume roll-to-roll processing.

PolyPlus Battery Company
Program: 
Project Term: 
07/01/2010 to 12/31/2012
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
PolyPlus Battery Company is developing the world's first commercially available rechargeable lithium-air (Li-Air) battery. Li-Air batteries are better than the Li-Ion batteries used in most EVs today because they breathe in air from the atmosphere for use as an active material in the battery, which greatly decreases its weight. Li-Air batteries also store nearly 700% as much energy as traditional Li-Ion batteries. A lighter battery would improve the range of EVs dramatically. PolyPlus is on track to making a critical breakthrough: the first manufacturable protective membrane between its lithium-based negative electrode and the reaction chamber where it reacts with oxygen from the air. This gives the battery the unique ability to recharge by moving lithium in and out of the battery's reaction chamber for storage until the battery needs to discharge once again. Until now, engineers had been unable to create the complex packaging and air-breathing components required to turn Li-Air batteries into rechargeable systems.
Program: 
Project Term: 
02/06/2013 to 03/31/2016
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
PolyPlus Battery Company is developing an innovative, water-based Lithium-Sulfur (Li-S) battery. Today, Li-S battery technology offers the lightest high-energy batteries that are completely self-contained. New features in these water-based batteries make PolyPlus' lightweight battery ideal for a variety of military and consumer applications. The design could achieve energy densities between 400-600 Wh/kg, a substantial improvement from today's state-of-the-art Li-Ion batteries that can hold only 150 Wh/kg. PolyPlus' technology--with applications for vehicle transportation as well as grid storage--would be able to transition to a widespread commercial and military market.
Program: 
Project Term: 
03/01/2010 to 03/31/2013
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Porifera is developing carbon nanotube membranes that allow more efficient removal of CO2 from coal plant exhaust. Most of today's carbon capture methods use chemical solvents, but capture methods that use membranes to draw CO2 out of exhaust gas are potentially more efficient and cost effective. Traditionally, membranes are limited by the rate at which they allow gas to flow through them and the amount of CO2 they can attract from the gas. Smooth support pores and the unique structure of Porifera's carbon nanotube membranes allows them to be more permeable than other polymeric membranes, yet still selective enough for CO2 removal. This approach could overcome the barriers facing membrane-based approaches for capturing CO2 from coal plant exhausts.
Pratt & Whitney Rocketdyne (PWR)
Program: 
Project Term: 
06/14/2013 to 03/15/2015
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Pratt & Whitney Rocketdyne (PWR) is developing a new combustor for gas turbine engines that uses shockwaves for more efficient combustion through a process known as continuous detonation. These combustors would enable more electricity to be generated from a given amount of natural gas, increasing the efficiency of gas turbine engines while reducing greenhouse gas emissions. PWR will design and build continuous detonation combustors and test them in a simulated gas turbine environment to demonstrate the feasibility of incorporating the technology into natural gas-fueled turbine electric power generators.
Pratt & Whitney Rocketdyne (PWR)
Program: 
Project Term: 
05/01/2013 to 03/15/2016
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Pratt & Whitney Rocketdyne (PWR) is developing two distinct--but related--technologies that could revolutionize how we convert natural gas. First, PWR will work with Pennsylvania State University to create a high-efficiency gas turbine which uses supercritical fluids to cool the turbine blades. Allowing gas turbines to operate at higher temperatures can drive significant improvements in performance, particularly when coupled with the recapture of waste heat. This advancement could reduce the cost of electricity by roughly 60% and resulting in significantly lower greenhouse gas emissions. Drawing upon lessons learned from this technology, PWR will then work with the Gas Technology Institute to build a system that partially oxidizes natural gas in the high-temperature, high-pressure combustor of a natural gas turbine, efficiently facilitating its conversion into a liquid fuel. This approach could simultaneously improve the efficiency of gas conversion into fuels and chemicals, and also generate high-quality waste heat in the process which could be used to generate electricity.
Program: 
Project Term: 
02/25/2019 to 02/24/2022
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 
The Primus Power team will work with the Columbia Electrochemical Energy Center to develop a long-duration grid energy storage solution that leverages a new approach to the zinc bromine battery, a popular chemistry for flow batteries. Taking advantage of the way zinc and bromine behave in the cell, the battery will eliminate the need for a separator to keep the reactants apart when charged, as well as allow all the electrolyte to be stored in a single tank, instead of multiple cells. This reduction in "balance of plant" hardware will reduce system cost.
Program: 
Project Term: 
09/01/2010 to 12/31/2012
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Primus Power is developing zinc-based, rechargeable liquid flow batteries that could produce substantially more energy at lower cost than conventional batteries. A flow battery is similar to a conventional battery, except instead of storing its energy inside the cell it stores that energy for future use in chemicals that are kept in tanks that sit outside the cell. One of the most costly components in a flow battery is the electrode, where the electrochemical reactions actually occur. Primus Power is investigating and developing mixed-metal materials for their electrodes that could ultimately reduce the lifetime cost of flow batteries because they are more durable and long-lasting than electrodes found in traditional batteries. Using these electrodes, Primus Power's flow batteries can be grouped together into robust, containerized storage pods for use by utilities, renewable energy developers, businesses, and campuses.
Program: 
Project Term: 
04/01/2017 to 09/30/2018
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

Qromis will develop a new type of gallium nitride (GaN) transistor, called a lateral junction field effect transistor (LJFET) and investigate its reliability compared to other types of transistors, such as SiC junction field effect transistors (JFETs) and GaN-based high electron mobility transistors (HEMTs). Qromis' innovative LJFET design distributes and places the peak electric field away from the surface, eliminating a key point of failure that has plagued GaN HEMT devices and prevented them from achieving widespread use. If successful, this project will deliver a 1.5kV, 10A GaN LJET devices that would be scalable to 100A. The devices will be fabricated on thick, uniform GaN layers deposited on a coefficient of thermal expansion matched 8-inch QST® engineered platform that is compatible with current silicon processing equipment - reducing the cost of the devices. The uniform GaN layers on the large area platform will increase the yield of the devices further decreasing the cost. Finally, the thick GaN will enable the higher voltage standoff and improve the thermal management of the devices.

Program: 
Project Term: 
05/01/2019 to 04/30/2020
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 

Qromis Inc. will develop an improved selective area doping fabrication method for GaN, ultimately enabling a broader range of higher-performing, manufacturable, and scalable GaN power devices. The team seeks to improve the process using magnesium (Mg) diffusion, in which atoms move from an area of high concentration to a lower one at high temperatures. In particular, Qromis seeks to understand what controls the Mg diffusion rate in GaN to better leverage the phenomenon for the production of high-performance devices. If successful, the Qromis team hopes to accelerate the adoption of GaN power devices in power conversion circuits.

Program: 
Project Term: 
04/03/2019 to 04/02/2022
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 
The Quidnet Energy team will develop a modified pumped hydro energy storage system that stores energy via high-pressure water in the subsurface. To charge, the team will pump water into confined rock underground, creating high pressures. When energy is needed later, the pressure forces water back up the well and through a generator to produce electricity. The Quidnet team will demonstrate the reversibility of this process and the ability to translate it across multiple types of geography within the U.S.
Program: 
Project Term: 
07/01/2010 to 12/31/2012
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Recapping is developing a capacitor that could rival the energy storage potential and price of today's best EV batteries. When power is needed, the capacitor rapidly releases its stored energy, similar to lightning being discharged from a cloud. Capacitors are an ideal substitute for batteries if their energy storage capacity can be improved. Recapping is addressing storage capacity by experimenting with the material that separates the positive and negative electrodes of its capacitors. These separators could significantly improve the energy density of electrochemical devices.
Program: 
Project Term: 
05/22/2017 to 05/21/2020
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 

SAFCell will develop a novel electrochemical system that converts ammonia to hydrogen. The key innovation is the use of a solid acid electrolyte, a type of electrolyte that is stable in the presence of ammonia while under the operating conditions needed for reactions. Solid acid fuel cell stacks operate at intermediate temperatures (around 250°C) and demonstrate high tolerances to typical anode catalyst poisons such as carbon monoxide and hydrogen sulfide without a significant decrease in performance. The system also aims to realize the conversion of ammonia along with the purification and compression of hydrogen in a single, cost-effective system, thus greatly simplifying the infrastructure required to transport and store hydrogen. These properties give solid acid fuel cell devices advantages over other fuel cell technologies in cost, durability, start/stop cycling, fuel flexibility, and simplified system design.

Program: 
Project Term: 
10/01/2014 to 06/30/2018
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

SAFCell is developing solid acid fuel cells (SAFCs) that operate at 250 °C and will be nearly free of precious metal catalysts. Current fuel cells either rely on ultra-pure hydrogen as a fuel and operate at low temperatures for vehicles technologies, or run on natural gas, but operate only at high temperatures for grid-scale applications. SAFCell's fuel cell is utilizing a new solid acid electrolyte material to operate efficiently at intermediate temperatures and on multiple fuels. Additionally, the team will dramatically lower system costs by reducing precious metals, such as platinum, from the electrodes and developing new catalysts based on carbon nanotubes and metal organic frameworks. The proposed SAFC stack design will lead to the creation of low cost fuel cells that can withstand common fuel impurities, making them ideal for distributed generation applications.

Program: 
Project Term: 
07/06/2015 to 07/05/2016
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Signetron is developing a technology that will enable fast, cost effective, and accurate energy audits without the need for expensive, skilled labor to collect data manually. Signetron's innovation integrates low-cost visible and infrared optical cameras into a handheld scanner with depth sensing. This enables the operator to capture indoor 3D maps of building geometry and energy-relevant features as they traverse a building. Captured data is uploaded to the cloud where it is analyzed by Signetron software to generate an energy model and provide actionable energy audit information. If successful, this technology will reduce the time and cost associated with today's energy audits by a factor of 5 and 10 respectively, while offering actionable energy-saving recommendations. This technology could lower the cost barrier for building energy audits, thereby enabling property owners and facility managers to better understand the sources of energy loss in their buildings and where to optimally target retrofits to improve energy savings.
Program: 
Project Term: 
03/01/2019 to 02/28/2022
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 
Sila Nanotechnologies will develop a class of drop-in cathode replacement materials to double the energy stored in traditional LIBs, the most popular battery chemistry used in a wide range of applications, including electric vehicles. The Sila team will replace conventional Ni and Co-based cathodes with a nanostructured composite made from abundant materials that greatly increases the battery's energy density. Sila Nanotechnologies will pair their new cathode material with a proprietary silicon-based anode, enabling the battery to outperform current lithium-ion cells while using existing cell assembly infrastructures to reduce the cost and risk of technology adoption.
Program: 
Project Term: 
10/01/2012 to 03/31/2016
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Sila Nanotechnologies is developing a high-throughput technology for scalable synthesis of high-capacity nanostructured materials for Li-Ion EV batteries. The successful implementation of this technology will allow improvements in energy storage capacity of today's best batteries at half the cost. In contrast to other high-capacity material synthesis technologies, Sila's materials show minimal volume changes during the battery operation, which is a key challenge of next-generation battery anode materials. In addition, Sila's technology may allow for the dramatic enhancements of the batteries' cycle life, structural stability, safety, and charging rate. The low-cost, drop-in compatibility with existing cell manufacturing technologies, and environmental friendliness of both the material synthesis and electrode fabrication will assist in the rapid adoption of Sila's technology. Coupling increased battery capacity with substantial cost reduction could alleviate the driving range anxiety and price problems associated with today's EVs. Increasing the capacity of battery electrodes is critical to lowering the cost of Li-Ion batteries and making EVs cost-competitive with gasoline-based vehicles.
Program: 
Project Term: 
12/01/2016 to 05/31/2018
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

Sila Nanotechnologies will develop solid-state ceramic lithium batteries with high energy density. Traditional methods using ceramic electrolytes significantly reduces a battery's volumetric energy density because the materials are relatively bulky. Commercially produced separator membranes are also expensive and thick because of challenges in fabrication and handling of thinner, defect-free solid-state electrolyte membranes. In addition, such membranes are often air sensitive, have low ionic conductivity, and are susceptible to the growth of branchlike metal fibers called dendrites. Unimpeded, dendrites can grow to span the space between the negative and positive electrodes, causing short-circuiting. To overcome these limitations the team proposes a shift in solid-state battery technology: melt-infiltrating of a solid-state electrolyte at moderate temperatures into a porous separator-cathode stack. This reduces cell volume by nearly three times, while resulting in a corresponding increase in energy density and cost-reduction. The result is a product with low cost and high production yield, built on a process similar to conventional organic electrolyte-filling techniques. The equipment for this process will be very similar to what is currently used in Li-ion battery manufacturing, except that it will be slightly modified for operation at elevated temperatures of up to 250-400°C. The use of equipment similar to what is currently used by industry will reduce the risks of technology scale-up.

SixPoint Materials
Program: 
Project Term: 
03/10/2014 to 03/09/2020
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 
SixPoint Materials will create low-cost, high-quality vertical gallium nitride (GaN) substrates for use in high-power electronic devices. In its two-phase project, SixPoint Materials will first focus on developing a high-quality GaN substrate and then on expanding the substrate's size. Substrates are thin wafers of semiconducting material used to power devices like transistors and integrated circuits. SixPoint Materials will use a two-phase production approach that employs both hydride vapor phase epitaxy technology and ammonothermal growth techniques to create its high-quality, low-cost GaN substrates.
Program: 
Project Term: 
04/23/2012 to 09/30/2014
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

Smart Wire Grid is developing a solution for controlling power flow within the electric grid to better manage unused and overall transmission capacity. The 300,000 miles of high-voltage transmission line in the U.S. today are congested and inefficient, with only around 50% of all transmission capacity utilized at any given time. Increased consumer demand should be met in part with a more efficient and economical power flow. Smart Wire Grid's devices clamp onto existing transmission lines and control the flow of power within--much like how internet routers help allocate bandwidth throughout the web. Smart wires could support greater use of renewable energy by providing more consistent control over how that energy is routed within the grid on a real-time basis. This would lessen the concerns surrounding the grid's inability to effectively store intermittent energy from renewables for later use.

Program: 
Project Term: 
02/17/2014 to 05/17/2015
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Soraa will develop a cost-effective technique to manufacture high-quality, high-performance gallium nitride (GaN) crystal substrates that have fewer defects by several orders of magnitude than conventional GaN substrates and cost about 10 times less. Substrates are thin wafers of semiconducting material needed to power devices like transistors and integrated circuits. Most GaN-based electronics today suffer from very high defect levels and, in turn, reduced performance. In addition to reducing defects, Soraa will also develop methods capable of producing large-area GaN substrates--3 to 4 times larger in diameter than conventional GaN substrates--that can handle high-power switching applications.
Program: 
Project Term: 
06/06/2012 to 01/31/2016
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Soraa's new GaN crystal growth method is adapted from that used to grow quartz crystals, which are very inexpensive and represent the second-largest market for single crystals for electronic applications (after silicon). More extreme conditions are required to grow GaN crystals and therefore a new type of chemical growth chamber was invented that is suitable for large-scale manufacturing. A new process was developed that grows GaN crystals at a rate that is more than double that of current processes. The new technology will enable GaN substrates with best-in-world quality at lowest-in-world prices, which in turn will enable new generations of white LEDs, lasers for full-color displays, and high-performance power electronics.
Program: 
Project Term: 
08/01/2014 to 12/31/2015
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

Space Orbital Services, in conjunction with SRI International, proposes to conduct laboratory-based, small-scale research to develop a methane conversion technology that employs unconventional chemistry at relatively low temperature, based on impacting a common alloy catalyst. The project uses laboratory experiments to establish, measure and refine operational parameters including conversion rates and efficiency, reaction products, and reactor design.

Program: 
Project Term: 
12/10/2013 to 04/30/2015
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
SRI International is developing a reactor that is able to either convert titanium tetrachloride to titanium powder or convert multiple metal chlorides to titanium alloy powder in a single step. Conventional titanium extraction and conversion processes involve expensive and energy intensive melting steps. SRI is examining the reaction between hydrogen and metal chlorides, which could produce titanium alloys without multiple complicated steps. Using titanium powder for transportation applications has not been practical until now because of the high cost of producing powder from titanium ingots. SRI's reactor requires less material because it produces powder directly rather than converting it from intermediate materials such as sponge or ingot. Transforming titanium production into a direct process could reduce costs and energy consumption by eliminating energy intensive steps and decreasing material inputs.
Program: 
Project Term: 
05/01/2015 to 09/30/2018
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
SRI International will develop a highly efficient, wearable thermal regulation system that leverages the human body's natural thermal regulation areas such as the palms of the hands, soles of feet, and upper facial area. This innovative "active textile" technology is enabled by a novel combination of low-cost electroactive and passive polymer materials and structures to efficiently manage heat transfer while being quiet and comfortable. SRI's electronically controllable active textile technology is versatile - allowing the wearer to continue to use their existing wardrobe. We believe that these features will allow for products that augment wearable technologies and thus achieve the widespread adoption needed to save energy on a large scale.
Program: 
Project Term: 
08/05/2015 to 06/06/2017
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
SRI International and PPG Industries are integrating SRI's proprietary Spectrally Tuned All-Polymer Technology for Inducing Cooling (STATIC) technology into a novel structure for use as a radiative cooling system that can provide supplemental cooling for power plant water during the daytime or nighttime. The two-layer polymer structure covers a pool holding power plant condenser discharge water. The cover prevents sunlight from penetrating it and warming the water, while allowing thermal energy to radiate to the sky, even during the day. The STATIC structure provides an insulating air gap to prevent conductive and convective heating, and both layers work in concert to reject solar energy. Specifically, the bottom layer acts as an emitter at the water temperature and radiates heat to the sky, while the top layer and key component, produced using STATIC technology, enables transmittance of the thermal radiation. The cooling power can achieve greater than 100 W/m2 without evaporation. All materials are inexpensive and amenable to scalable manufacturing techniques, which could lower the cost of the system.
SRI International
Program: 
Project Term: 
12/05/2016 to 12/04/2019
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

SRI International, in collaboration with its partners will develop a transparent, adhesive film that can be easily applied to single-pane windows to reduce heat loss from warm rooms during cold weather. The team proposes an entirely new approach to thermal barriers and will develop a new class of non-porous materials that use nanoparticles to reflect heat and provide superior thermal insulation. Moreover, the transparent film does not block visible light, meaning that the coating allows light to transmit through the window and brighten the interior. The film could also improve the soundproofing of the window.

Stanford University
Program: 
Project Term: 
08/07/2017 to 08/06/2020
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 

Stanford University will develop a non-contact root imaging system that uses a hybrid of microwave excitation and ultrasound detection. Microwave excitation from the surface can penetrate the soil to the roots, and results in minor heating of the roots and soil at varying levels depending on their physical properties. This heating creates a thermoacoustic signal in the ultrasound domain that travels back out of the soil. The team's advanced ultrasound detector has the ability to detect these signals and maintain sufficient signal-to-noise ratio for imaging and root biomass analysis. The team will develop a suite of image processing algorithms to convert the data into an understanding of root properties including structure, biomass density, and depth. Plant physiologists from the Carnegie Institution for Science will partner with Stanford to characterize maize roots under various drought conditions as well as soil type and density variations. Since the entire system is non-contact, it eliminates the need to make good physical contact with the irregular soil surfaces. Over a three-year period, the team will first demonstrate the feasibility of non-contact thermoacoustics for root imaging under laboratory conditions, then develop and test a thermoacoustic system in the field. If successful, Stanford's system could examine root structures in a noninvasive manner that produces images far more advanced than current imaging methods.

Program: 
Project Term: 
02/20/2013 to 03/19/2018
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Stanford University is developing a device for the rooftops of buildings and cars that will reflect sunlight and emit heat, enabling passive cooling, even when the sun is shining. This device requires no electricity or fuel and would reduce the need for air conditioning, leading to energy and cost savings. Stanford's technology relies on recently developed state-of-the-art concepts and techniques to tailor the absorption and emission of light and heat in nanostructured materials. This project could enable buildings, cars, and electronics to cool without using electric power.
Program: 
Project Term: 
09/13/2019 to 09/12/2022
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 
Program: 
Project Term: 
07/27/2016 to 03/25/2020
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 
Stanford University will develop Powernet, an open-source and open architecture platform for scalable and secure coordination of consumer flexible load and DERs. Powernet will be based on the principle of connecting information networks to the power network (connecting bits and watts). It uses a layered architecture that enables real-time coordination of centralized resources with millions of DERs by integrating embedded sensing and computing, power electronics, and networking with cloud computing. The team will develop a Home Hub system capable of networking with existing inverters and appliances in a home and controlling power via smart switches that replace traditional fuses. The Home Hub will also use algorithms for aggregating local customer resources to meet local constraints and global coordination objectives. A cloud-based cloud coordinator platform will be developed that executes optimization and monitoring functions to coordinate Home Hubs by minimizing costs while increasing aggregate consumer quality-of-service.
Program: 
Project Term: 
01/14/2010 to 11/30/2016
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

A team of researchers from more than 10 departments at Stanford University is collaborating to transform the way Americans interact with our energy-use data. The team built a web-based platform that collects historical electricity data, which it uses to perform a variety of experiments to learn what triggers people to respond. Experiments include new financial incentives, a calculator to understand the potential savings of efficient appliances, new Facebook interface designs, communication studies using Twitter, and educational programs with the Girl Scouts. Economic modeling is underway to better understand how results from the San Francisco Bay Area can be broadened to other parts of the country.

Stanford University
Program: 
Project Term: 
04/30/2015 to 09/30/2017
Project Status: 
CANCELLED
Project State: 
California
Technical Categories: 
Stanford University will develop transformative methods for integrating photonic, or radiant energy structures into textiles. Controlling the thermal photonic properties of textiles can significantly influence the heat dissipation rate of the human body, which loses a significant amount of heat through thermal radiation. To achieve heating, the team utilizes metallic nanowire embedded in textiles to enhance reflection of body heat. To achieve cooling, the team utilizes visibly opaque yet infrared transmissivity (IR) transparent textile. These techniques for heating and cooling have not yet been achieved to date. The team will leverage advances in photonic structures to build textiles with varying amounts of infrared transparency and reflectivity to enable a wearer to achieve comfort in a wider temperature range, and therefore generate a substantial reduction of energy consumption for both heating and cooling.
Program: 
Project Term: 
06/01/2016 to 12/31/2018
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

By leveraging advanced microfabrication processes, the team led by Stanford University will develop a scalable heat-to-electricity conversion device with higher performance at a lower manufacturing cost than is presently available to industry. The team's solid-state conversion device is based on a 20th century thermionic converter design, where an electric current is produced by heating up an electrode to eject electrons across a vacuum gap for collection by a cooler electrode. Historically, thermionic energy converters are limited by heat losses and are costly to manufacture due to the high precision used in their construction. However, by utilizing wafer-based fabrication processes to create a much smaller vacuum gap and enhanced thermal isolation structures, Stanford's thermionic converter will result in improved device performance, lower manufacturing cost, and a scalability for systems producing Watts to Megawatts of power. The team's initial focus is on the residential Combined Heat and Power (CHP) applications, but their innovative microfabricated thermionic device could also be used to improve efficiency in high-temperature solar thermal systems as well as convert waste heat from factory equipment, power plants, and vehicles to useful power.

Program: 
Project Term: 
02/11/2014 to 09/30/2017
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

Stanford University is developing an EV battery that can be used as a structural component of the vehicle. Today's EV battery packs only serve one purpose: electrical energy storage. They do not carry structural loads during operation or absorb impact energy in the event of a collision. Stanford's new battery design would improve upon existing technologies in four key areas: 1) structural capabilities, 2) damage and state sensing systems, 3) novel battery management and thermal regulation, and 4) high-capacity battery cells. Stanford's research will result in a multifunctional battery chassis system that is safe and achieves high efficiency in terms of energy storage at low production cost. The integration of such a battery system would result in decreased overall weight of the combined vehicle and battery, for greater EV range.

Program: 
Project Term: 
07/01/2018 to 06/30/2019
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

Stanford University will develop a new process to produce furan-2,5-dicarboxylic acid (FDCA), a potential replacement for purified terephthalic acid (PTA). PTA is produced from petroleum on the scale of 60 million tons per year and used to make synthetic polymers like polyester. The production of PTA is associated with 90 million tons of greenhouse gas emissions annually. FDCA, on the other hand, can be made from biomass and its polymers boast superior physical properties for high-volume applications such as beverage bottles. Current technologies produce FDCA from food sources (fructose) and have not demonstrated economic competitiveness with PTA. The Stanford technology produces FDCA from CO2 and furfural, a feedstock chemical produced industrially from waste biomass. The use of CO2 avoids challenging oxidation reactions required for fructose-based syntheses, which provides a potential advantage for commercial production. Packed-bed reactors utilizing the technology have achieved high FDCA yields but require reaction times that are too long for industrial application. This project will transition the process to a fluidized bed reactor, where reactants are suspended in flowing CO2, to achieve industrially viable synthesis rates. If optimized, the process could enable the production of FDCA with negative greenhouse gas emissions.

Stanford University
Program: 
Project Term: 
07/01/2010 to 06/30/2012
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Stanford University is developing an all-electron battery that would create a completely new class of energy storage devices for EVs. Stanford's all-electron battery stores energy by moving electrons rather than ions. Electrons are lighter and faster than the ion charge carriers in conventional Li-Ion batteries. Stanford's all-electron battery also uses an advanced structural design that separates critical battery functions, which increases both the life of the battery and the amount of energy it can store. The battery could be charged 1000s of times without showing a significant drop in performance.
Program: 
Project Term: 
10/31/2017 to 12/31/2018
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

Tandem PV will develop and test an advanced processing tool that integrates high-throughput solution deposition and precise drying to deposit large-area perovskite thin films of exceptional optical and electronic quality. Production of these films on large areas is a critical step towards perovskite-Si tandem PV cells that can achieve significantly higher efficiency than traditional Si PV cells. Small-scale perovskite PV device fabrication typically occurs using a spin-coating process, but the process is not easily scalable. The ability to deposit perovskite PV devices with a large-scale production technique while achieving the same quality and stability achieved by record-setting spin-coated laboratory cells would be a significant step forward. If the project is successful, it will remove a major obstacle to the successful commercialization of perovskite PVs. 

Teledyne Scientific & Imaging
Program: 
Project Term: 
10/01/2010 to 04/19/2013
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Teledyne is developing a liquid prism panel that tracks the position of the sun to help efficiently concentrate its light onto a solar cell to produce power. Typically, solar tracking devices have bulky and expensive mechanical moving parts that require a lot of power and are often unreliable. Teledyne's liquid prism panel has no bulky and heavy supporting parts--instead it relies on electrowetting. Electrowetting is a process where an electric field is applied to the liquid to control the angle at which it meets the sunlight above and to control the angle of the sunlight to the focusing lens--the more direct the angle to the focusing lens, the more efficiently the light can be concentrated to solar panels and converted into electricity. This allows the prism to be tuned like a radio to track the sun across the sky and steer sunlight into the solar cell without any moving mechanical parts. This process uses very little power and requires no expensive supporting hardware or moving parts, enabling efficient and quiet rooftop operation for integration into buildings.
Program: 
Project Term: 
02/04/2013 to 01/31/2014
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Teledyne Scientific & Imaging is developing a water-based, potassium-ion flow battery for low-cost stationary energy storage. Flow batteries store chemical energy in external tanks instead of within the battery container. This allows for cost-effective scalability because adding storage capacity is as simple as expanding the tank. Teledyne is increasing the energy and power density of their battery by 2-5 times compared to today's state-of-the-art vanadium flow battery. Their safe, scalable, low-cost energy storage technology would facilitate more widespread adoption and deployment of renewable energy technology.
Program: 
Project Term: 
10/01/2010 to 07/31/2013
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Teledyne Scientific & Imaging is developing cost-effective power drivers for energy-efficient LED lights that fit on a compact chip. These power drivers are important because they transmit power throughout the LED device. Traditional LED driver components waste energy and don't last as long as the LED itself. They are also large and bulky, so they must be assembled onto a circuit board separately which increases the overall manufacturing cost of the LED light. Teledyne is shrinking the size and improving the efficiency of its LED driver components by using thin layers of an iron magnetic alloy and new gallium nitride on silicon devices. Smaller, more efficient components will enable the drivers to be integrated on a single chip, reducing costs. The new semiconductors in Teledyne's drivers can also handle higher levels of power and last longer without sacrificing efficiency. Initial applications for Teledyne's LED power drivers include refrigerated grocery display cases and retail lighting.
Program: 
Project Term: 
11/24/2015 to 03/31/2020
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 
Tour Engine, in collaboration with Wisconsin Engine Research Consultants (WERC) will develop a miniature internal combustion engine (ICE) based on Tour's existing split-cycle engine technology. Traditional ICEs use the force generated by the combustion of a fuel (e.g. natural gas (NG)) to move a piston, transferring chemical energy to mechanical energy. This can then be used in conjunction with a generator to create electricity. Unlike a normal combustion engine, a split-cycle engine divides the process into a cold cylinder (intake and compression) and a hot cylinder (expansion and exhaust). This allows for independent optimization of the compression and expansion ratios, leading to increased thermal efficiency. A novel Spool Shuttle Crossover Valve (SSCV) is the key enabler for the Tour engine, as it transfers the fuel/air charge from the cold to hot cylinder.
Program: 
Project Term: 
02/13/2012 to 03/31/2015
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Transphorm is developing power switches for new types of inverters that improve the efficiency and reliability of converting energy from solar panels into useable electricity for the grid. Transistors act as fast switches and control the electrical energy that flows in an electrical circuit. Turning a transistor off opens the circuit and stops the flow of electrical current; turning it on closes the circuit and allows electrical current to flow. In this way a transistor can be used to convert DC from a solar panel into AC for use in a home. Transphorm's transistors will enable a single semiconductor device to switch electrical currents at high-voltage in both directions--making the inverter more compact and reliable. Transphorm is using Gallium Nitride (GaN) as a semiconductor material in its transistors instead of silicon, which is used in most conventional transistors, because GaN transistors have lower losses at higher voltages and switching frequencies.
Program: 
Project Term: 
09/01/2010 to 05/28/2013
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
Transphorm is developing transistors with gallium nitride (GaN) semiconductors that could be used to make cost-effective, high-performance power converters for a variety of applications, including electric motor drives which transmit power to a motor. A transistor acts like a switch, controlling the electrical energy that flows around an electrical circuit. Most transistors today use low-cost silicon semiconductors to conduct electrical energy, but silicon transistors don't operate efficiently at high speeds and voltage levels. Transphorm is using GaN as a semiconductor material in its transistors because GaN performs better at higher voltages and frequencies, and it is more energy efficient than straight silicon. However, Transphorm is using inexpensive silicon as a base to help keep costs low. The company is also packaging its transistors with other electrical components that can operate quickly and efficiently at high power levels--increasing the overall efficiency of both the transistor and the entire motor drive.
Program: 
Project Term: 
03/16/2018 to 04/15/2020
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 

Trophic will lead a MARINER Category 1 project to design and develop a seaweed cultivation system anticipated to maximize biomass yield while reducing costs. Trophic's system will rely on development of a number of innovations to increase the production of seaweed-based biomass. First, they will implement a variable-row spacing cultivation system to maximize the capital efficiency of the farm. Seaweed is traditionally grown on multiple parallel long culture ropes. Trophic's concept will explore the capability to dynamically vary the distance between each line to maximize the sustainable yield over the entire farm area across all stages of seaweed growth -- the culture ropes are kept closer together when the plants are small, while expanding as the plants grow. This reduces crowding and shading that could lead to slower growth rates. The second innovation is to design a passively tethered hydrofoil powered by solar energy. Higher concentrations of nutrients exist in deeper ocean depths. The hydrofoil, positioned deep below the surface and tethered to a buoy, lifts nutrients from deeper water to fertilize crops at the surface. A third innovation is their wave-diving system. Large waves pose a consistent danger in unprotected offshore environments. The wave-diving system acts as a brake against the upward movement of the culture ropes, capping the maximum structural loads from waves, thus allowing the system to survive much heavier sea states than otherwise possible. The team plans to combine these innovations with computer modeling to develop a system for seaweed farming that, if successful, will produce high yields at a cost of less than $60 per dry metric ton.

University of California, Berkeley (UC Berkeley)
Program: 
Project Term: 
07/01/2010 to 09/25/2015
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

The University of California, Berkeley (UC Berkeley) is developing a method for identifying the best metal organic frameworks for use in capturing CO2 from the flue gas of coal-fired power plants. Metal organic frameworks are porous, crystalline compounds that, based on their chemical structure, vary considerably in terms of their capacity to grab hold of passing CO2 molecules and their ability to withstand the harsh conditions found in the gas exhaust of coal-fired power plants. Owing primarily to their high tunability, metal organic frameworks can have an incredibly wide range of different chemical and physical properties, so identifying the best to use for CO2 capture and storage can be a difficult task. UC Berkeley uses high-throughput instrumentation to analyze nearly 100 materials at a time, screening them for the characteristics that optimize their ability to selectively adsorb CO2 from coal exhaust. Their work will identify the most promising frameworks and accelerate their large-scale commercial development to benefit further research into reducing the cost of CO2 capture and storage.

University of California, Berkeley (UC Berkeley)
Program: 
Project Term: 
04/08/2013 to 11/30/2016
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

The University of California, Berkeley (UC Berkeley) and Indoor Reality are developing a portable scanning system and the associated software to rapidly generate indoor thermal and physical building maps. This will allow for cost-effective identification of building inefficiencies and recommendation of energy-saving measures. The scanning system is contained in a backpack which an operator would wear while walking through a building along with a handheld scanner. The backpack features sensors that collect building data such as room size and shape along with associated thermal characteristics. These data can then be automatically processed to detect building elements, such as windows and lighting, and then generate 2D floor plans and 3D maps of the building geometry and thermal features. The backpack technology enables rapid data collection and export to existing computer models to guide strategies that could reduce building energy usage. Because the skills required to operate this technology are less than required for a traditional energy audit and the process is significantly faster, the overall cost of the audit can be reduced and the accuracy of the collected data is improved. This reduced cost should incentivize more building managers to conduct energy audits and implement energy saving measures.

University of California, Berkeley (UC Berkeley)
Program: 
Project Term: 
11/21/2017 to 11/20/2019
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 

The University of California, Berkeley (UC Berkeley) will develop a new datacenter network topology that will leverage the energy efficiency and bandwidth density through the integration of silicon photonics into micro electro-mechanical system (MEMS) switches. Today's datacenter architectures use server nodes (with processor and memory) connected via a hierarchical network. In order to access a remote memory in these architectures, a processor must access the network to get to a particular server node, gaining access to the local memory of that server. This requires the remote server processor to be awake at all times in order to service the remote request. The processor-to-memory network has many stages and long latency, which results in significant energy waste in processor and memory idling on both sides of the network. The IceNet network is designed to achieve ultra-low latency connectivity between processor nodes and memory, drastically reducing energy wasted during system idling. A key component to the team's design is their LightSpark active laser power-management system. In addition to guiding the laser power where it is needed, the LightSpark module enables both wavelength and laser redundancy, increasing the robustness of the system. In total, the IceNet network will enable dramatic improvements in datacenter system efficiency, allowing for fine-grain power control of processors, links, and memory and storage components.

University of California, Berkeley (UC Berkeley)
Program: 
Project Term: 
03/16/2018 to 03/15/2021
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 

The University of California, Berkeley (UC Berkeley) and its project team will develop an extremely efficient AC-to-DC converter based on gallium nitride (GaN) devices for use in datacenters. Datacenters are the backbones of modern information technology and their physical size and power consumption is rapidly growing. Converters for datacenters need to be power dense and efficient to maximize the computing power per unit volume and to reduce operating costs and environmental impact. This project team seeks to develop a prototype device that converts power from a universal grid input (110-240 V at 50-60 Hz) to 48 V DC, the standard for datacenter and telecom supply. The team hopes that this GaN-based converter will enable a complete redesign of the power delivery network for future datacenters; while achieving a three-fold reduction in energy loss and 10 times improvement in power density over traditional conversion circuits. If successful, project developments will greatly reduce the amount of energy lost powering datacenters while significantly improving power capability over current converters.

University of California, Berkeley (UC Berkeley)
Program: 
Project Term: 
04/09/2018 to 04/08/2021
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 

The University of California, Berkeley (UC Berkeley) and its project team will develop an on-board electric vehicle charger using a gallium nitride (GaN) based converter to improve power density and conversion efficiency. Conventional power converter topologies which primarily use magnetics (i.e. inductors and transformers) for energy transfer suffer from a tradeoff between efficiency and size. In this project, the team proposes a shift in traditional charger design to develop a bidirectional converter dominated by capacitor-based energy transfer. The team will leverage recent advances in GaN devices and new control techniques to produce a 6.6 kW converter with 15 times the power density and higher efficiency than currently achievable. The bidirectional flow means that the device can act to charge the electric vehicle or operate in a vehicle-to-grid manner to use the vehicle as short term energy storage. If successful, project developments could help reduce the size and complexity of electric vehicle power systems.

University of California, Berkeley (UC Berkeley)
Program: 
Project Term: 
03/03/2017 to 03/02/2020
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 

The University of California, Berkeley (UC Berkeley) will lead a team that includes Sensys Networks and Hyundai America Technical Center to develop a novel control technology to reduce energy consumption of a plug-in hybrid electric vehicle by at least 20% without changing its drivability. Through connectivity with other vehicles and the roadway, the vehicle will access data such as signal phase and timing, traffic queue length and position, traffic volume and speed, and position and speed of nearby cars. The powertrain and vehicle dynamic controllers developed in this project will utilize this data to optimize how the plug-in hybrid test vehicles operate by adjusting parameters such as vehicle speed, electric motor torque, and battery charging power. The technology will be demonstrated with a fleet of vehicles in three applications: cooperative adaptive cruise control, speed harmonization with merging vehicles, and optimal approach/departure at intersections with traffic signals. The ability to work in real-time with a large number of factors and scenarios is enabled by computation conducted both onboard the vehicle and off-board using cloud-based computers. The team combines expertise in algorithm development and predictive controls from UC Berkeley with a leading technology for roadway sensing and vehicle to infrastructure (V2I) communication from Sensys Networks. Hyundai, a major global car manufacturer, will provide a state-of-the-art plug-in hybrid vehicle platform, extensive vehicle testing capability, and also a path to commercialization for the proposed controller technology into the high-volume light-duty vehicle market.

University of California, Berkeley (UC Berkeley)
Program: 
Project Term: 
05/14/2015 to 06/30/2018
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

The University of California, Berkeley (UC Berkeley) will team with WiTricity to develop and integrate highly resonant wireless power transfer technology to deliver efficient local thermal amenities to the feet, hands, face, and trunk of occupants in workstations. Until now, local comfort devices have had little market traction because they had to be tethered by a cord to a power source. The team will leverage on-going developments in wireless charging systems for consumer electronics to integrate high-efficiency power transmitting devices with local comfort devices such as heated shoe insoles and cooled and heated office chairs. The team will develop four types of local comfort devices to deliver heating and cooling most effectively. The devices will draw very little electrical power and enable potential HVAC energy savings of at least 30%.

University of California, Berkeley (UC Berkeley)
Program: 
Project Term: 
03/01/2013 to 06/30/2018
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

The University of California, Berkeley (UC Berkeley) is developing a device to monitor and measure electric power data from the grid's distribution system. The new instrument--known as a micro-phasor measurement unit (µPMU)--is designed to measure critical parameters such as voltage and phase angle at different locations, and correlate them in time via extremely precise GPS clocks. The amount of phase angle difference provides information about the stability and direction of power flow. Data collected from a network of these µPMUs would facilitate better monitoring and control of grid power flow--a critical element for integrating intermittent and renewable resources, such as rooftop solar and wind energy, and other technologies such as electric vehicles and distributed storage.

University of California, Davis (UC Davis)
Program: 
Project Term: 
01/07/2014 to 09/30/2017
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
The University of California, Davis (UC Davis) will engineer new biological pathways for bacteria to convert ethylene to a liquid fuel. Currently, ethylene is readily available and used by the chemicals and plastics industries to produce a wide range of useful products, but it cannot be cost-effectively converted to a liquid fuel like butanol, an alcohol that can be used directly as part of a fuel blend. UC Davis is addressing this problem with synthetic biology and protein engineering. The team will engineer ethylene assimilation pathways into a host organism and use that organism to convert ethylene into n-butanol, an important platform chemical with broad applications in many chemical and fuel markets. This technology could provide a transformative route from methane to liquid biofuels that is more efficient than ones found in nature.
University of California, Irvine (UC Irvine)
Program: 
Project Term: 
04/20/2015 to 04/19/2018
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

The University of California, Irvine (UC Irvine) will develop a dynamically adjustable thermoregulatory fabric. This fabric leverages established heat-managing capabilities of space blankets and color-changing polymers inspired by squid skin that will provide wearers with the unique ability to adaptively harness their own individual radiant heat production. This technology holds the potential to establish an entirely new line of personal apparel and localized thermal management products that could significantly reduce the energy required to heat and cool buildings.

University of California, Irvine (UC Irvine)
Program: 
Project Term: 
05/11/2018 to 05/10/2021
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 

The University of California, Irvine (UC Irvine) will lead a MARINER Category 3 team to develop a flexible macroalgae cultivation modeling system that integrates an open-source regional ocean model with a fine-scale hydrodynamic model capable of simulating forces and nutrient flows in various farming systems. Macroalgae farming systems will require significant capital. Investment and management decisions can be guided by the development of advanced modeling tools to help better understand the nature of macroalgae production within the context of specific ocean regions. The UC Irvine team expects to provide an improved set of tools for locating optimal macroalgae farm sites, evaluating farm designs for structural soundness under rough ocean conditions, assessing new macroalgae cultivation techniques and operational procedures to maximize productivity. Their model will be capable of resolving turbulent fluxes within a canopy and hydrodynamic stresses on structures at sub-meter resolution. It will also feature a macroalgae growth model that accounts for biological processes such as the enhancement of nutrient uptake due to the motion of the plant canopy and waves. Once completed, the modeling tool will be able to assess optimal sites for macroalgae farms on the U.S. West coast, while guiding operational decisions to maximize yield. The tool will also evaluate the productivity and structural performance of a range of macroalgae farm designs and cultivation techniques, and predict the impact on coastal ecosystems.

University of California, Los Angeles (UCLA)
Program: 
Project Term: 
09/30/2019 to 09/29/2022
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 
University of California, Los Angeles (UCLA)
Program: 
Project Term: 
10/01/2010 to 09/30/2012
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
The University of California, Los Angeles (UCLA) is developing a novel solid state cooling technology to translate a recent scientific discovery of the so-called giant electrocaloric effect into commercially viable compact cooling systems. Traditional air conditioners use noisy, vapor compression systems that include a polluting liquid refrigerant to circulate within the air conditioner, absorb heat, and pump the heat out into the environment. Electrocaloric materials achieve the same result by heating up when placed within an electric field and cooling down when removed--effectively pumping heat out from a cooler to warmer environment. This electrocaloric-based solid state cooling system is quiet and does not use liquid refrigerants. The innovation includes developing nano-structured materials and reliable interfaces for heat exchange. With these innovations and advances in micro/nano-scale manufacturing technologies pioneered by semiconductor companies, UCLA is aiming to extend the performance/reliability of the cooling module.
University of California, Los Angeles (UCLA)
Program: 
Project Term: 
01/01/2012 to 09/30/2015
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
The University of California, Los Angeles (UCLA) is redesigning the carbon fixation pathways of plants to make them more efficient at capturing the energy in sunlight. Carbon fixation is the key process that plants use to convert carbon dioxide (CO2) from the atmosphere into higher energy molecules (such as sugars) using energy from the sun. UCLA is addressing the inefficiency of the process through an alternative biochemical pathway that uses 50% less energy than the pathway used by all land plants. In addition, instead of producing sugars, UCLA's designer pathway will produce pyruvate, the precursor of choice for a wide variety of liquid fuels. Theoretically, the new biochemical pathway will allow a plant to capture 200% as much CO2 using the same amount of light. The pathways will first be tested on model photosynthetic organisms and later incorporated into other plants, thus dramatically improving the productivity of both food and fuel crops.
University of California, Los Angeles (UCLA)
Program: 
Project Term: 
01/01/2014 to 06/30/2017
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
The University of California, Los Angeles (UCLA) will develop a high-efficiency, synthetic metabolic pathway that transforms methanol into n-butanol, a liquid fuel that can be used as a direct substitute for gasoline due to its high energy density. In nature, the process by which organisms that feed on methane convert it into fuel is inefficient, resulting in a substantial loss of carbon in the process. UCLA's synthetic metabolic pathway would oxidize the methanol into formaldehyde, convert the formaldehyde into an essential metabolite known as acetyl-CoA, and then condense the acetyl-CoA into n-butanol. In the end, UCLA's pathway would transform 4 parts methanol into 3 parts water and 1 part n-butanol while achieving 100% carbon conversion. UCLA will also attempt to move this synthetic metabolic pathway into organisms capable of biological methane activation to create a complete methane to n-butanol microbial production system.
University of California, Los Angeles (UCLA)
Program: 
Project Term: 
02/01/2011 to 09/30/2016
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
The University of California, Los Angeles (UCLA) and NASA's Jet Propulsion Laboratory (JPL) are creating cost-effective storage systems for solar thermal energy using new materials and designs. A major drawback to the widespread use of solar thermal energy is its inability to cost-effectively supply electric power at night. State-of-the-art energy storage for solar thermal power plants uses molten salt to help store thermal energy. Molten salt systems can be expensive and complex, which is not attractive from a long-term investment standpoint. UCLA and JPL are developing a supercritical fluid-based thermal energy storage system, which would be much less expensive than molten-salt-based systems. The team's design also uses a smaller, modular, single-tank design that is more reliable and scalable for large-scale storage applications.
University of California, Los Angeles (UCLA)
Program: 
Project Term: 
09/29/2016 to 09/28/2017
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

The University of California, Los Angeles (UCLA) is developing a new high-power, long-life, acid-based battery that addresses the cycle life issues associated with lead-acid batteries today. Lead-acid batteries are used extensively in gasoline-powered vehicles and even modern electric vehicles for initial ignition, but inevitably wear out after a limited number of complete discharge cycles. To solve this problem, UCLA will incorporate novel, newly-discovered material that allows the battery to store a greater electrical charge using a conventional battery design. This new battery would provide up to 500 times more charge and discharge cycles and up to 10 times the power of existing lead-acid batteries. UCLA's batteries will be compatible with comparable manufacturing processes for current lead-acid batteries, allowing for rapid, low-cost commercialization.

University of California, Los Angeles (UCLA)
Program: 
Project Term: 
03/20/2015 to 12/31/2019
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 

The University of California, Los Angeles (UCLA) seeks to develop a platform technology, Catalytic Units for Synthetic Biochemistry (CUSB) that will use enzymes in solution (i.e. in vitro) to convert carbohydrates into a wide variety of useful carbon compounds in extremely high yield. The use of enzymes in solution has advantages over whole-cell microorganisms. Enzymes can be concentrated much further than whole-cells which improves volumetric productivity. Additionally enzymes may be less sensitive to the production of compounds of interest that are typically toxic to whole-cells even at low concentrations. Yet most importantly, the use of specific enzymes provides a high degree of precision to direct carbon and energy efficiently from the feedstock to the final product. The team envisions catalytic breakdown modules that will reduce the carbohydrates to simpler compounds. Breakdown energy is released during this chemical process and can be stored in other high-energy chemicals. Additional catalytic modules will be added to utilize the carbon and energy from the breakdown module to build useful chemicals that can replace petroleum products. This process can potentially generate new markets by producing complex chemicals more economically and with higher energy efficiency than current methods. The team predicts that their technology can reduce the non-renewable energy input required for chemical production by more than 2.5 fold. The system can also provide large-scale production of chemicals that are too costly or too environmentally damaging to produce by current methods. During a prior ARPA-E IDEAS award, the team developed this platform technology. Now, as an addition to the ARPA-E REMOTE program, the UCLA team will further its research and demonstrate CUSB by building a prototype system that can produce isobutanol and terpene, at a much higher yield and productivity than has been previously achieved. The successful development of CUSB will represent a paradigm shift in the way high-volume commodity chemicals can be produced from renewable resources.

University of California, Los Angeles (UCLA)
Program: 
Project Term: 
01/04/2017 to 05/30/2021
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 

The University of California, Los Angeles (UCLA) will harness advances in nanotechnology to produce thermally insulating transparent barrier (THINNER) coatings to reduce heat losses through single panes of glass. The porous coatings consist of multiple layers of silica/titania films that can simultaneously control the transmission of heat, light and thermal radiation. The internal structure of the coatings is determined by a polymer lattice that is later removed. This leaves a robust porous oxide layer that is transparent and thermally insulating. In addition to reducing heat loss, the coatings will reduce water condensation on the inner window surface and block harmful ultraviolet light. The project will also develop a scalable, high-temperature spray-on process to inexpensively deposit the coating onto glass at the factory.

University of California, Los Angeles (UCLA)
Program: 
Project Term: 
11/01/2014 to 04/30/2017
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
The University of California, Los Angeles (UCLA) is developing a low-cost, intermediate-temperature fuel cell that will also function like a battery to increase load-following capability. The fuel cell will use new metal-oxide electrode materials--inspired by the proton channels found in biological systems--that offer superior energy storage capacity and cycling stability, making it ideal for distributed generation systems. UCLA's new materials also have high catalytic activity, which will lower the cost of the overall system. Success of this project will enable a rapid commercialization of multi-functional fuel cells for broad applications where reliable distributed generations are needed.
University of California, Los Angeles (UCLA)
Program: 
Project Term: 
07/15/2010 to 04/30/2014
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
The University of California, Los Angeles (UCLA) is utilizing renewable electricity to power direct liquid fuel production in genetically engineered Ralstonia eutropha bacteria. UCLA is using renewable electricity to convert carbon dioxide into formic acid, a liquid soluble compound that delivers both carbon and energy to the bacteria. The bacteria are genetically engineered to convert the formic acid into liquid fuel--in this case alcohols such as butanol. The electricity required for the process can be generated from sunlight, wind, or other renewable energy sources. In fact, UCLA's electricity-to-fuel system could be a more efficient way to utilize these renewable energy sources considering the energy density of liquid fuel is much higher than the energy density of other renewable energy storage options, such as batteries.
University of California, Riverside (UC Riverside)
Program: 
Project Term: 
03/02/2017 to 03/05/2020
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 

The University of California, Riverside (UC Riverside) team will design, develop, and test an innovative vehicle-powertrain eco-operation system for natural-gas-fueled plug-in hybrid electric buses. This system will use emerging connected and automated vehicle applications like predictive approach and departure at traffic signals, efficient adaptive cruise, and optimized stopping and accelerating from stop signs and bus stops. Since stop-and-go operation wastes a large amount of energy, optimizing these maneuvers for an urban transit bus presents significant opportunities for improving energy efficiency. Using look-ahead information on traffic and road grade, the team will optimize the powertrain operation by managing combustion engine output, electric motor output and battery state of charge in this hybrid application.

University of California, San Diego (UC San Diego)
Program: 
Project Term: 
11/03/2016 to 11/02/2019
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

The University of California, San Diego (UCSD) will develop a polymer-based thermal insulating film that can be applied onto windowpanes to reduce heat loss and condensation. The team's approach uses polymer-based coatings with specifically designed structures. Heat management is gained by the thermal conductivity of polymer and the internal thermal barriers. The coating is inherently low-emissivity, and also resists condensation and abrasion. The technology is initially designed for single-pane windows, but can be expanded in the future for use in double-pane windows, doors, and roofs, as well as potential applications in the automobile, aerospace, and military industries.

University of California, San Diego (UC San Diego)
Program: 
Project Term: 
05/07/2015 to 09/06/2018
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
The University of California, San Diego (UC San Diego) will develop smart responsive garments that enable building occupants to adjust their personal temperature settings and promote thermal comfort to reduce or eliminate the need for building-level air conditioning. The essence of building energy savings in UC San Diego's approach is based on the significant energy consumption reduction from the traditional global cooling/heating of the whole room space. This is done via localized cooling and heating only in the wearable structure in the very limited space near a person's skin. This smart textile will thermally regulate the garment's heat transport through changes in thickness and pore architecture by shrinking the textile when hot and expanding it when cold.
University of California, San Diego (UC San Diego)
Program: 
Project Term: 
06/13/2016 to 12/12/2019
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 
The University of California, San Diego (UC San Diego) will develop coordination algorithms and software using intelligent control and optimization for flexible load and DERs to provide reliable frequency regulation services for the bulk power grid. The project will develop a multi-layer framework for larger-scale energy aggregators to act on behalf of their smaller-sized customers to help respond to incoming requests from regional transmission operators. The team will develop approaches that aggregators can use to quantify reserves, system objectives and constraints, customer usage patterns, and generation forecasts. Aggregators will use distributed coordination algorithms to rapidly respond to operators while considering network constraints and quality of services for customers. The UC San Diego technology to manage flexible loads and DERs offers economic and operational advantages for utilities, operators and customers.
University of California, San Diego (UC San Diego)
Program: 
Project Term: 
04/26/2019 to 04/25/2021
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 
University of California, San Diego (UC San Diego)
Program: 
Project Term: 
04/01/2014 to 08/31/2015
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

The University of California, San Diego (UC San Diego) is developing an early-stage concept for an advanced electrochemical energy storage system. If successful, the new approach would enable higher-energy density and higher-power systems that are able to operate over a much wider temperature and voltage range than today's technologies. Similar to how water is used as a suspension medium for the acid in a conventional lead-acid car battery, the research team is studying the use of certain gases liquefied under pressure as solvents in novel electrolyte systems. The team's work will enhance our understanding of the electrochemical mechanisms involved, and demonstrate their energy storage and cycling capabilities. The work will evaluate the new electrolyte solvents for safety, non-toxicity, non-flammability, performance and cost compared to the traditional organic solvents used today.

University of California, San Diego (UC San Diego)
Program: 
Project Term: 
04/15/2018 to 08/01/2019
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 

The University of California, San Diego (UC San Diego) will develop a scalable process for the production of large (up to 500 lb.) pre-cast blocks using lean-organic compacted hybrid (LOCH), a new type of infrastructural material which may compete with traditional portland cement. Portland cement is the most common cement type and one of the most versatile construction materials in the world. Its widespread use over the last century is due to its low cost, abundance of its ingredients including limestone and shales, and standard performance characteristics. However, the production of portland cement involves heating the raw materials to high temperatures, which is an energy intensive process. It also contributes to greenhouse gas emissions by producing nearly one ton of CO2 for every ton of cement. The UC San Diego team proposes LOCH as a cheaper, more durable, energy efficient alternative to portland cement. LOCH is not formed through hydration like traditional cement, but rather uses a polymer binder to bond raw sand or soil grains together. This method uses only the minimal amount of binder content, leading to low material costs. If implemented widely, LOCH could provide a drastic reduction in energy use and CO2 emissions as compared to portland cement, at a significant cost reduction. The 1-2 hour fast setting time of LOCH can simplify project management and further lower costs of construction logistics and labor. The construction procedure of LOCH does not require rebar, the steel mesh and bars used to reinforce traditional cement, eliminating their time consuming installation and repair operations. LOCH also promises increased strength, durability, and longer service life. Nearly 15% of portland cement is used for precast parts, standard cement parts pre-assembled offsite. The team will first target this precast market, as it provides the best opportunity to easily integrate and scale the new technology.

University of California, San Diego (UC San Diego)
Program: 
Project Term: 
02/19/2014 to 04/28/2017
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

The University of California, San Diego (UC San Diego) is developing a new battery that can be built into a vehicle frame. Conventional electric vehicle batteries are constructed independently of chassis, which results in a heavier, more inefficient vehicle. By rethinking auto frame design and incorporating the battery into the frame, vehicles can be cheaper and lighter vehicle. Since conventional batteries require potentially flammable materials, UC San Diego will also explore new chemistries to make this multifunctional battery safe in the event of a collision. This approach may require a complete redesign to the auto frame with consideration of adaptability to future battery technologies.

University of California, San Diego (UC San Diego)
Program: 
Project Term: 
02/09/2015 to 02/08/2020
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 
The University of California, San Diego (UC San Diego) will conduct testing of existing ARPA-E energy storage technologies in both laboratory and grid-connected conditions. Home to one of the country's largest microgrids, UC San Diego will apply its advanced understanding of microgrid operation in the California market to select and value applications for storage, in grid-connected and islanded conditions, and to develop duty cycles for energy storage in order to serve individual and stacked applications. UC San Diego plans to test cells and modules from ARPA-E-funded battery developers in its battery laboratories, and UC San Diego experts will assist ARPA-E battery developers in resolving issues and enhancing performance. Those batteries that perform well in laboratory testing using the selected duty cycles will then be deployed for extended testing on UC San Diego's microgrid. This approach will allow UC San Diego to achieve test results that represent a wide spectrum of applications, determine system performance under a variety of conditions, and eventually generate initial performance data that can be shared with electric utilities and other potential grid storage buyers to inform them of the promise of early-stage storage technologies.
University of California, San Diego (UC San Diego)
Program: 
Project Term: 
07/17/2017 to 02/10/2020
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 

The University of California, San Diego (UC San Diego) will develop a new datacenter network based on photonic technology that can double the energy efficiency of a datacenter. Their LEED project mirrors the development of CPU processors in PCs. Previous limitations in the clock rate of computer processors forced designers to adopt parallel methods of processing information and to incorporate multiple cores within a single chip. The team envisions a similar development within datacenters, where the advent of parallel lightwave networks can act as a bridge to more efficient datacenters. This architecture leverages advanced photonic switching and interconnects in a scalable way. Additionally, the team will add a low-loss optical switch technology that routes the data traffic carried as light waves. They will also add the development of packaged, scalable transmitters and receivers that can be used in the system without the need for energy-consuming optical amplification, while still maintaining the appropriate signal-to-noise ratio. The combination of these technologies can create an easily controllable, energy-efficient architecture to help manage rapidly transitioning data infrastructure to cloud-based services and cloud-based computing hosted in datacenters.

University of California, San Diego (UC San Diego)
Program: 
Project Term: 
01/24/2017 to 01/31/2020
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 

The University of California, San Diego (UC San Diego), in partnership with Liox Power and the University of Maryland, will develop a self-forming, high temperature solid-state lithium battery that solves the critical cost and performance problems impeding commercialization of solid-state batteries for electric vehicles. The battery will possess a very long life due to a chemical mechanism that repairs cycling damage automatically. This self-healing electrolyte will also limit the growth of dendrites. Dendrites are branchlike metal fibers that can grow to span the space between the negative and positive electrodes, thereby causing a short circuit. The team plans to reduce costs by designing a manufacturing process for forming solid-state electrolytes and cathodes in a single step by depositing a graded lithium/phosphorous/sulfur composite material as both the cathode and electrolyte. In theory, this composition should be able to remove any deformations due to dendrite formation by a simple thermal cycling process. A non-flammable polymer used within this composite will both add structural strength and eliminate the need for flammable liquid electrolytes. The team projects that the battery will cost half of current lithium-ion batteries while doubling the energy density.

University of California, Santa Barbara (UCSB)
Program: 
Project Term: 
04/07/2016 to 04/06/2019
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
The University of California, Santa Barbara (UCSB) will develop a new technology for optical communication links. Optical interconnects transfer data by carrying light through optical fibers, and offer higher bandwidths than copper with higher efficiency and, consequently, reduced heat losses. However, short-reach optical interconnects are not widely used because of their higher costs and larger device footprints. Production costs of these interconnects could be reduced by using silicon-based fabrication technologies, but silicon is not suited for fabricating lasers, a key ingredient. In contrast III-V semiconductors, are well-suited for fabricating highly efficient lasers, but at a high cost. The team plans to combine these components to create III-V lasers, grown on a silicon substrate, harnessing both the low cost of silicon and the superior laser of the III-V semiconductor. However, growing the III-V laser material directly on silicon is difficult due to incompatibilities in their crystal structures. The team aims to overcome this challenge by implementing nanostructures called "quantum dots" as the light producing material and by growing the structure on patterned silicon substrates to help contain potential defects.
University of California, Santa Barbara (UCSB)
Program: 
Project Term: 
04/14/2016 to 10/13/2019
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
The University of California, Santa Barbara (UCSB) will develop a gallium nitride (GaN) laser-based white light emitter with no efficiency droop at high current densities. The team's solution will address the efficiency and cost limitations of LEDs. Laser diodes do not suffer efficiency droop at high current densities, and this allows for the design of lamps using a single, small, light-emitting chip operating at high current densities. Using a single chip reduces system costs compared with LEDs because the system uses less material per chip, requires fewer chips, and employs simplified optics and a simplified heat-sink. The chip area required for LED technologies will be significantly reduced using laser-based solid state lighting. This technology will also enable highly controllable beams of light that cannot be achieved with LEDs. The goal of the project is to develop a 1,000 lumen laser-based white light emitter with the efficiency of at least 200 lm/W and a cost of $0.25/klm.
Program: 
Project Term: 
02/19/2019 to 02/18/2022
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 
The University of California-Santa Barbara will develop a low power, low-cost solution to overcome power and bandwidth scaling limitations facing hyperscale data centers and exponential growth in global data traffic. The FRESCO transceiver leverages advances in fundamental laser physics and photonic integration to enable terabit, coherent optical data transmission inside data centers through chip-scale spectrally pure and ultra-stable wavelength division multiplexed laser light sources . The project outcome will be an integrated photonic package capable of connecting to 100 terabit-per-second networking switches over coherent optical short-reach data center fiber links. This effort could transform the way data centers, data center interconnects, and terabit Ethernet switches are built, drastically reducing their global energy consumption.
University of California, Santa Barbara (UCSB)
Program: 
Project Term: 
03/10/2014 to 07/15/2019
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
The University of California, Santa Barbara (UCSB) will develop new vertical gallium nitride (GaN) semiconductor technologies that will significantly enhance the performance and reduce the cost of high-power electronics. UCSB will markedly reduce the size of its vertical GaN semiconductor devices compared to today's commercially available, lateral GaN-on-silicon-based devices. Despite their reduced size, UCSB's vertical GaN devices will exhibit improved performance and significantly lower power losses when switching and converting power than lateral GaN devices. UCSB will also simplify fabrication processes to keep costs down.
University of California, Santa Barbara (UCSB)
Program: 
Project Term: 
09/01/2017 to 02/29/2020
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 

The University of California, Santa Barbara (UCSB) will develop and demonstrate a technology platform that integrates efficient photonic interfaces directly into chip "packages." The simultaneous design and packaging of photonics with electronics will enable higher bandwidth network switches that are much more energy efficient. Traditional electronic switches toggle connections between wires, each wire providing a different communication channel. Having a limited number of communication channels means that electronic switches can lead to "fat" hierarchical networks, consuming energy each time data has to travel through one switch to another. By developing a platform that directly integrates efficient photonics into first-level chip packages, layers of traditional network hierarchy can be eliminated, reducing the power, latency, and cost of datacenters. Photonic interconnects integrated directly into chip packages can enable switches with a much larger port count than traditional electronic switches. These new, larger switches will connect more servers using fewer levels of required switching. The team estimates that an improvement in the network metrics (either cost or power) will enable a more than linear improvement in the overall transactional efficiency because faster networks and faster endpoint data-rates can be deployed, reducing the total number of computational and storage systems necessary to satisfy user transactions.

University of California, Santa Barbara (UCSB)
Program: 
Project Term: 
05/01/2018 to 04/30/2021
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 

The University of California, Santa Barbara (UCSB) will lead a MARINER Category 4 project to develop a system-level solution to continuously monitor all stages of seaweed biomass production. To maximize biomass yields and minimize risk, farm managers must be able to monitor farm progress starting at seaweed outplanting and continuing through the growth cycle to harvest. UCSB will develop a Scalable Aquaculture Monitoring System (SAMS) comprised of autonomous and semi-autonomous technologies capable of monitoring biomass productivity and physiological status, as well as the environmental conditions that control its near-term production. UCSB will also develop new software tools to integrate data into real-time, actionable intelligence. SAMS will deliver subsurface biomass imaging and quantification at an individual plant-scale, while maintaining the scalability to monitor multiple giant kelp farms simultaneously. If successful, the integration of canopy and subsurface kelp biomass, productivity, and condition information with environmental data will provide farm managers with a suite of farm data products to monitor farm status from outplant to harvest.

University of California, Santa Barbara (UCSB)
Program: 
Project Term: 
03/15/2013 to 06/30/2016
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
The University of California, Santa Barbara (UCSB) is developing an energy storage device for HEVs that combines the properties of capacitors and batteries in one technology. Capacitors enjoy shorter charging times, better durability, and higher power than batteries, but offer less than 5% of their energy density. By integrating the two technologies, UCSB's design would offer a much reduced charge time with a product lifetime that matches or surpasses that of typical EV batteries. Additionally, the technology would deliver significantly higher power density than any current battery. This feature would extend EV driving range and provide a longer life expectancy than today's best EV batteries.
University of California, Santa Cruz (UC Santa Cruz)
Program: 
Project Term: 
05/01/2013 to 12/31/2014
Project Status: 
CANCELLED
Project State: 
California
Technical Categories: 
The University of California, Santa Cruz (UC Santa Cruz) is developing an optical device that enables the use of concentrated solar energy at locations remote to the point of collection. Conventional solar concentration systems typically use line of sight optical components to concentrate solar energy onto a surface for direct conversion of light into electricity or heat. UC Santa Cruz's innovative approach leverages unique thin-film materials, processes, and structures to build a device that will efficiently guide sunlight into an optical fiber for use away from the point of collection. UC Santa Cruz's optical device improves the coupling of high-power, concentrated solar energy systems into fiber-optic cables for use in applications such as thermal storage, photovoltaic conversion, or solar lighting.
University of Southern California (USC)
Program: 
Project Term: 
10/01/2010 to 09/30/2013
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
University of Southern California (USC) is developing an iron-air rechargeable battery for large-scale energy storage that could help integrate renewable energy sources into the electric grid. Iron-air batteries have the potential to store large amounts of energy at low cost--iron is inexpensive and abundant, while oxygen is freely obtained from the air we breathe. However, current iron-air battery technologies have suffered from low efficiency and short life spans. USC is working to dramatically increase the efficiency of the battery by placing chemical additives on the battery's iron-based electrode and restructuring the catalysts at the molecular level on the battery's air-based electrode. This can help the battery resist degradation and increase life span. The goal of the project is to develop a prototype iron-air battery at significantly cost lower than today's best commercial batteries.
University of Southern California (USC)
Program: 
Project Term: 
03/01/2013 to 03/19/2018
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 
University of Southern California (USC) is developing a water-based, metal-free, grid-scale flow battery that will be cheaper and more rapidly produced than other batteries. Flow batteries store chemical energy in external tanks instead of within the battery container. This allows for cost-effective scalability because adding storage capacity is as simple as expanding the tank. Batteries for grid-scale energy storage must be inexpensive, robust, and sustainable--many of today's mature battery technologies do not meet all these requirements. Using innovative designs and extremely low-cost organic materials, USC's new flow battery has the potential to reduce cost, increase durability, and store increased amounts of excess energy, thereby promoting greater renewable energy deployment.
University of Southern California (USC)
Program: 
Project Term: 
08/17/2017 to 02/16/2020
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 

The University of Southern California (USC) will develop a framework and testbed for evaluating proposed photonic and optical-electronic interconnect technologies, such as those developed under the ARPA-E ENLITENED program. These new approaches will develop novel network topologies enabled by integrated photonics technologies, which use light instead of electricity to transmit information. USC's effort aims to offer an impartial assessment of these emerging datacenter concepts and architectures and their ability to reduce overall power consumption in a meaningful way. The team will focus on developing architecture specifications and models to assess the effects of photonic project components on system performance and efficiency, making it possible to quantify the potential energy reduction in datacenters. Specifically, they will simulate the impact on overall energy efficiency of dramatically different traffic, loading, and architectural configurations and then identify how individual new technologies such as optical components, optical switches, and transceivers, affect efficiency. The team expects that capabilities and facilities influenced by the project will form the basis of a national facility for evaluating new concepts for datacenter operations and the role of photonics in those systems.

Program: 
Project Term: 
08/19/2019 to 08/18/2022
Project Status: 
ACTIVE
Project State: 
California
Technical Categories: 
Program: 
Project Term: 
01/03/2012 to 05/31/2016
Project Status: 
ALUMNI
Project State: 
California
Technical Categories: 

Varentec is developing compact, low-cost transmission power controllers with fractional power rating for controlling power flow on transmission networks. The technology will enhance grid operations through improved use of current assets and by dramatically reducing the number of transmission lines that have to be built to meet increasing contributions of renewable energy sources like wind and solar. The proposed transmission controllers would allow for the dynamic control of voltage and power flow, improving the grid's ability to dispatch power in real time to the places where it is most needed. The controllers would work as fail-safe devices whereby the grid would be restored to its present operating state in the event of a controller malfunction instead of failing outright. The ability to affordably and dynamically control power flow with adequate fail-safe switchgear could open up new competitive energy markets which are not possible under the current regulatory structure and technology base.