Sorry, you need to enable JavaScript to visit this website.

ARPA-E Projects

Search ARPA-E Projects by Keyword

Displaying 1 - 3 of 3
Program: 
Project Term: 
07/02/2018 to 04/15/2020
Project Status: 
ACTIVE
Project State: 
District Of Columbia
Technical Categories: 

Fearless Fund will lead a MARINER Category 1 project to design and develop a new system to enable large-scale macroalgae "ranching" using remote sensing, imaging, and modeling technologies. The core concept targets monitoring free-floating, low-impact Sargassum seaweed in the Gulf of Mexico for cost-effective biomass harvest. Fearless Fund's cultivation process is designed to mimic naturally occurring seaweed mats found at the surface of the ocean. The concept leverages the free-floating nature of Sargassum, reducing costs from labor, seeding, and harvesting normally associated with seaweed farming. Fearless Fund will investigate the potential to artificially "seed" circular currents found in the Gulf of Mexico with Sargassum cuttings. The team envisions that Sargassum could be ranched within Gulf currents, where it can grow to maturity at a predicted rate. The circular current transports the crop closer to shore at the projected time of harvest, which is calculated based on historical data. Remote sensing technologies will be used to monitor the crop over a three month cultivation season before harvesting the new crop with barges and tug boats after the uninterrupted initial growing period. By improving these methods and leveraging the wealth of data generated from a suite of sensors, the team hopes that industrial-scale farming of macroalgae can be achieved without capital-intensive infrastructure.

George Washington University (GWU)
Program: 
Project Term: 
08/02/2017 to 11/16/2018
Project Status: 
ALUMNI
Project State: 
District Of Columbia
Technical Categories: 

George Washington University (GWU) will develop a new technique to produce commercial III-V substrates called Transfer Printed Virtual Substrates (TPVS). To reduce costs, the team proposes using a single source substrate to grow numerous virtual substrate layers. The team will use an enabling technology, called micro-transfer printing (MTP), to transfer the layers from the source substrate, in the form of many microscale "chiplets," and deposit them onto a low-cost handle (silicon, for example). Once printed, the clean surfaces of the MTP process allows each chiplet to complete the epitaxial growth process on the lower cost substrate after having been seeded from the initial source and having sacrificial layers in between to release the chiplets from the source wafer. The TPVS process can potentially yield tens to hundreds virtual substrates from a single source wafer. Any micro/nanoscale device grown on III-V substrates, such as sensors, detectors, lasers, power electronics, and high-speed transistors, will experience significant cost reductions as a direct result of TPVS deployment. TPVS can also reduce the demand for rare minerals used for a wide range of critical technological applications due to the greater efficiency with which each initial source substrate is utilized.

Program: 
Project Term: 
12/15/2017 to 02/25/2020
Project Status: 
ACTIVE
Project State: 
District Of Columbia
Technical Categories: 

George Washington University (GWU) and their partners will develop a hybrid CPV concept that combines highly efficient multi-junction solar cells and low-cost single-junction solar cells. When direct sunlight hits the lens array, it is concentrated 1000-fold and is focused onto the multi-junction solar cells. Diffuse light not captured in this process is instead captured by the low-cost single-junction solar cells. The module design is lightweight, fewer than 10 mm thick, and has a profile similar to conventional FPV. Moreover, the combination of the two types of cells increases efficiency. GWU will use its expertise in micro-transfer printing to fabricate and assemble the multi-junction cells. This process will reduce manufacturing costs and further increase efficiency.