Sorry, you need to enable JavaScript to visit this website.

ARPA-E Projects

Search ARPA-E Projects by Keyword

Displaying 1 - 7 of 7
Ames National Laboratory
Program: 
Project Term: 
01/01/2012 to 05/31/2015
Project Status: 
ALUMNI
Project State: 
Iowa
Technical Categories: 
Ames Laboratory is developing a new class of permanent magnets based on the more commonly available element cerium for use in both EVs and renewable power generators. Cerium is 4 times more abundant and significantly less expensive than the rare earth element neodymium, which is frequently used in today's most powerful magnets. Ames Laboratory will combine other metal elements with cerium to create a new magnet that can remain stable at the high temperatures typically found in electric motors. This new magnetic material will ultimately be demonstrated in a prototype electric motor, representing a cost-effective and efficient alternative to neodymium-based motors.
Iowa State University (ISU)
Program: 
Project Term: 
06/01/2016 to 06/30/2018
Project Status: 
CANCELLED
Project State: 
Iowa
Technical Categories: 

The team led by Iowa State University (ISU) will develop an All Solid-State Sodium Battery (ASSSB) that will have a high energy content, can easily be recycled, and rely on highly abundant and extremely low cost starting materials. Commercially available sodium-based batteries operate at elevated temperatures, which decreases the efficiency and safety of the system. The team seeks to improve all three of the main components of a sodium-based battery: the anode, cathode, and electrolyte separator. The team's anode is a porous carbon nanotube layer that will serve as a framework on which sodium metal will be deposited. The separator will be made of a novel oxy-thio-nitride glass solid electrolyte, and the cathode will be composed of a polymer in which reversible sodium insertion and removal takes place. The team will need to overcome several challenges, including reducing interfacial resistance between the organic electrode and the solid electrolyte. The proposed sodium battery can operate at room temperature, uses a benign and scalable solid-stack design for a long cycle life, and expects to achieve an energy density eqivalent to state-of-the-art Li-ion cells.

Iowa State University (ISU)
Program: 
Project Term: 
08/11/2016 to 12/31/2017
Project Status: 
ALUMNI
Project State: 
Iowa
Technical Categories: 

Iowa State University (ISU) will develop a catalytic autothermal pyrolysis (CAP) process for the production of aromatics and olefins that refiners blend into transportation fuels. Pyrolysis is the decomposition of substances by heating - the same process used to render wood into charcoal, caramelize sugar, and dry roast coffee beans. Traditionally, energy for pyrolysis is provided through indirect heat exchange, employing high temperature heat exchangers within reactors or conveying hot solids into reactors with the feedstock. This approach complicates the design and operation of reactors and requires a separate combustor to burn char, coke, or other fuel to generate the thermal energy. The ISU team plans to use an autothermal fluidized bed reactor, a specialized reactor where a gas is passed through solid granular material at high velocity. Air is used as the fluidizing gas to promote direct, partial combustion of biomass and pyrolysis products to supply the energy required for endothermic operation. This will replace indirect heating methods with direct heating within the reactor, simplifying the design and reducing capital cost while increasing throughput, improving catalyst life, and achieving product yield and quality similar to or greater than current processes. The team seeks to demonstrate CAP in the laboratory and pilot-scale reactors; identify optimal CAP operating conditions to maximize the yield of hydrocarbons; and develop engineering scaling relationships for CAP reactors to facilitate the design of commercial-scale CAP reactors.

Iowa State University (ISU)
Program: 
Project Term: 
02/01/2017 to 09/30/2019
Project Status: 
ACTIVE
Project State: 
Iowa
Technical Categories: 

Iowa State University (ISU) will develop new lithium-ion-conducting glassy solid electrolytes to address the shortcomings of present-day lithium batteries. The electrolytes will have high ionic conductivities and excellent mechanical, thermal, chemical, and electrochemical properties. Because glasses lack grain boundaries, they will also be impermeable to lithium dendrites, branchlike metal fibers that can short-circuit battery cells. These glassy solid electrolytes can enhance the safety, performance, manufacturability, and cost of lithium batteries. In addition to the electrolyte development, the team will build a micro-sheet glass ribbon processing facility and optimize conditions to identify a composition that will enable low-cost fabrication. Roll-to-roll manufacturing of the long, ribbon micro-sheets could be used to mass-produce enormous volumes of lithium batteries at very low cost and in flexible, stacked-layer formats.

Iowa State University (ISU)
Program: 
Project Term: 
06/12/2017 to 12/31/2019
Project Status: 
ACTIVE
Project State: 
Iowa
Technical Categories: 

Iowa State University (ISU) will develop new sensors that measure the amount of nitrogen in soils and plants multiple times per day throughout the growing season. Nitrogen fertilizer is the largest energy input to U.S. corn production. However, its use is inefficient due to a lack of low-cost, effective nitrogen sensors. Year-to-year variation in nitrogen mineralization, due to differences in soil water and temperature, creates tremendous uncertainty about the proper fertilizer input and can cause farmers to over-apply. As a result, nitrogen fertilizer is lost from croplands to the surrounding environment where it pollutes air and water resources. To address this problem, the team will develop a novel silicon microneedle in-plant nitrogen sensor and a microfluidic soil nitrogen sensor. The microscale needles can be inserted into multiple sites of the plant to provide frequent and accurate monitoring of nitrate uptake, and for the first time provide a view of plant nitrogen use as the plant and roots develop. The team will also develop an automated microfluidic sensor which will measure the amount of nitrate in soil by extracting very small amounts of solution from the soil. The microfludic technology on which soil sensors are based can be produced at low cost. The combination of these two sensors will allow for a deeper understanding of plant nitrogen use and how it correlates with nitrate levels in the soil. These new sensors will accelerate the effort to identify, select, and breed new crops with improved nitrogen use efficiency. And the project will help increase the energy efficiency of our agriculture systems while reducing input costs, greenhouse gas emissions, and nitrate pollution of aquatic ecosystems.

Program: 
Project Term: 
09/01/2018 to 08/31/2021
Project Status: 
ACTIVE
Project State: 
Iowa
Technical Categories: 

Iowa State University (ISU) will develop a comprehensive testing protocol and simulation tools to evaluate the energy savings and reliability of occupancy recognition sensor technologies for commercial and residential buildings. A barrier to wide adoption of new occupancy sensors is the lack of rigorous and widely accepted methodologies for evaluating the energy savings and reliability of occupancy recognition of these systems. To address this need, ISU's protocols will allow them to determine occupancy recognition, sensor effectiveness, and reliability in both laboratory and real-world conditions for residential and commercial applications. Using their protocol and simulation tools, sensor technologies will be tested, including occupancy presence technologies for residential buildings, occupant counting solutions for commercial buildings, and CO2 sensing technologies for commercial buildings. For commercial buildings, the office, and academic submarkets will be the focus of these efforts, two of the highest energy-consuming building sectors. For residential buildings, a diversity of building types and interior layouts located in Ames, Iowa will be used to conduct real-world field testing. Results from the proposed work will be used to develop the framework for two nationwide test standards.

Program: 
Project Term: 
01/15/2010 to 10/14/2011
Project Status: 
CANCELLED
Project State: 
Iowa
Technical Categories: 

Iowa State University (ISU) is genetically engineering a species of aquatic microalgae called Chlamydomonas for more energy efficient conversion of sunlight and carbon dioxide to biofuels. Current microalgae genetic technologies are imprecise and hinder the rapid engineering of a variety of desirable traits into Chlamydomonas. In the absence of genetic engineering, it remains unlikely that current microalgae technologies for biofuel production will be able to economically compete with traditional fossil fuels. ISU is developing a portfolio of technologies for rapid genetic modification and breeding that will enable greater flexibility for genetic modification on a routine basis. The ISU project will optimize microalgae breeding and genetic engineering to develop efficient, large-scale industrial biofuel production.