Sorry, you need to enable JavaScript to visit this website.

ARPA-E Projects

Search ARPA-E Projects by Keyword

Displaying 1 - 20 of 20
Program: 
Project Term: 
10/01/2010 to 06/30/2014
Project Status: 
ALUMNI
Project State: 
North Carolina
Technical Categories: 
ABB is developing an advanced energy storage system using superconducting magnets that could store significantly more energy than today's best magnetic storage technologies at a fraction of the cost. This system could provide enough storage capacity to encourage more widespread use of renewable power like wind and solar. Superconducting magnetic energy storage systems have been in development for almost 3 decades; however, past devices were designed to supply power only for short durations--generally less than a few minutes. ABB's system would deliver the stored energy at very low cost, making it ideal for eventual use in the electricity grid as a cost-effective competitor to batteries and other energy storage technologies. The device could potentially cost even less, on a per kilowatt basis, than traditional lead-acid batteries.
Program: 
Project Term: 
02/21/2019 to 02/20/2022
Project Status: 
ACTIVE
Project State: 
North Carolina
Program: 
Project Term: 
09/13/2017 to 09/12/2019
Project Status: 
ACTIVE
Project State: 
North Carolina
Technical Categories: 

Adroit Materials will develop a gallium nitride (GaN) selective area doping process to enable high-performance, reliable GaN-based, high-power switches which are promising candidates for future high efficiency, high power electronic applications.. Specifically, doping capabilities that allow for the creation of localized doped regions must be developed for GaN in order to reach its full potential as a power electronics semiconductor. Adroit's process will focus on implantation of magnesium ions and an innovative high temperature, high pressure activation anneal, or heat treatment, process to remove implantation damage and control performance-reducing defects. By developing an in-depth understanding of the ion implantation doping process, the team will be able to demonstrate usable and reliable planar and embedded p-n junctions, the principal building block of modern electronic components like transistors.

Program: 
Project Term: 
01/25/2012 to 07/31/2017
Project Status: 
ALUMNI
Project State: 
North Carolina
Technical Categories: 
Cree is developing a compact, lightweight power conversion device that is capable of taking utility-scale solar power and outputting it directly into the electric utility grid at distribution voltage levels--eliminating the need for large transformers. Transformers "step up" the voltage of the power that is generated by a solar power system so it can be efficiently transported through transmission lines and eventually "stepped down" to usable voltages before it enters homes and businesses. Power companies step up the voltage because less electricity is lost along transmission lines when the voltage is high and current is low. Cree's new power conversion devices will eliminate these heavy transformers and connect a utility-scale solar power system directly to the grid. Cree's modular devices are designed to ensure reliability--if one device fails it can be bypassed and the system can continue to run.
Program: 
Project Term: 
09/01/2010 to 12/31/2014
Project Status: 
ALUMNI
Project State: 
North Carolina
Technical Categories: 
Cree is developing silicon carbide (SiC) power transistors that are 50% more energy efficient than traditional transistors. Transistors act like a switch, controlling the electrical energy that flows through an electrical circuit. Most power transistors today use silicon semiconductors to conduct electricity. However, transistors with SiC semiconductors operate at much higher temperatures, as well as higher voltage and power levels than their silicon counterparts. SiC-based transistors are also smaller and require less cooling than those made with traditional silicon power technology. Cree's SiC transistors will enable electrical circuits to handle higher power levels more efficiently, and they will result in much smaller and lighter electrical devices and power converters. Cree, an established leader in SiC technology, has already released a commercially available SiC transistor that can operate at up to 1,200 volts. The company has also demonstrated a utility-scale SiC transistor that operates at up to 15,000 volts.
Program: 
Project Term: 
05/14/2015 to 11/13/2019
Project Status: 
ACTIVE
Project State: 
North Carolina
Technical Categories: 
Duke University, in conjunction with its partners, will build a coded aperture miniature mass spectrometer environmental sensor (CAMMS-ES) for use in a methane monitoring system. The team will also develop search, location, and characterization algorithms. Duke will apply its recent innovations in mass spectrometers to increase the throughput of the spectrometer, providing continuous sampling without diminishing its resolution by integrating spatially coded apertures and corresponding reconstruction algorithms. The coded aperture will also provide advanced specificity and sensitivity for methane detection and other volatile organic compounds (VOCs) associated with natural gas production. Duke's innovations could provide low-cost, advanced sensors to localize and characterize methane and VOC emissions, helping to accelerate detection and mitigation of methane and VOC emissions at natural gas sites.
Program: 
Project Term: 
06/06/2018 to 06/05/2020
Project Status: 
ACTIVE
Project State: 
North Carolina
Technical Categories: 

Duke University will develop a residential sensor system that uses a dynamic meta-surface radar antenna design to determine occupancy in residential buildings. Traditional line-of-sight movement sensors suffer from high error rates. To increase accuracy, the Duke team will develop a sensor that monitors electromagnetic waveforms that are scattered both directly and indirectly off a person, eliminating the need for a direct line-of-sight between the sensor and the person. The sensor hardware continuously generates distinct microwave patterns to probe all corners of the house. Once a person enters a room, their motion changes the scattering statistics of the environment, which is used to establish real-time room occupancy. These characteristics are then analyzed using machine-learning techniques to establish human presence. The radar antenna can quickly sample an area and this information can be used to distinguish humans with the sensitivity to detect even stationary human's micro movements such as breathing. Further, the system operates at microwave frequencies, ensuring minimal concern for human safety. The proposed sensor does not require an internet connection or communication links, ensuring minimal security and privacy concerns. If successful, the system promises detection of occupants and near-zero false negative rate without any complex user interactions.

Program: 
Project Term: 
02/05/2013 to 05/31/2016
Project Status: 
ALUMNI
Project State: 
North Carolina
Technical Categories: 
HexaTech is developing new semiconductors for electrical switches that will more efficiently control the flow of electricity across high-voltage electrical lines. A switch helps control electricity: switching it on and off, converting it from one voltage to another, and converting it from an Alternating Current (A/C) to a Direct Current (D/C) and back. Most switches today use silicon or silicon-based semiconductors, which are not able to handle high voltages, fast switching speeds, or high operating temperatures. HexaTech has developed highest quality, single crystalline Aluminum Nitride (AlN) semiconductor wafers. HexaTech AlN wafers are the enabling platform for power converters which can handle 50 times more voltage than silicon, as well as higher switching speeds and operating temperatures.
Hi Fidelity Genetics
Program: 
Project Term: 
05/05/2016 to 11/10/2017
Project Status: 
ALUMNI
Project State: 
North Carolina
Technical Categories: 
Hi Fidelity Genetics will develop a low-cost device to measure the characteristics of plant roots and the environmental conditions that affect their development. Their device, called the "RootTracker," is a cylindrical, cage-like structure equipped with sensors on the rings of the cage. Before a seed is planted, farmers can push or twist the RootTracker directly into the soil. A seed is then planted at the top of the cage, allowing the plant to grow naturally while sensors accurately measure root density, growth angles, and growth rates, while having minimal impact on the growth of the plant. The prototype includes additional sensors attached to a removable, reusable rod to monitor environmental conditions. Data gathered by the device can be transmitted wirelessly or recorded internally using a low-cost microcontroller charged by solar power. The main technical challenge is automatically adjusting the calibration of the sensors, which are affected by soil type, soil moisture, and other environmental conditions that can disrupt the signal produced by the sensor. Another challenge is to distinguish between different types of biological matter. The team will also develop software for processing the data generated by the device and conduct laboratory and field tests to assess the performance of the prototype. Data collected by the device will help breeders further optimize root system architecture, which should lead to more energy-efficient crop varieties.
Kyma Technologies
Program: 
Project Term: 
03/10/2014 to 03/09/2018
Project Status: 
CANCELLED
Project State: 
North Carolina
Technical Categories: 
Kyma Technologies will develop a cost-effective technique to grow high-quality gallium nitride (GaN) seeds into GaN crystal boules, which are used as the starting material for a number of semiconductor devices. Currently, growing boules from GaN seeds is a slow, expensive, and inconsistent process, so it yields expensive electronic devices of varying quality. Kyma will select the highest quality GaN seeds and use a proprietary hydride vapor phase epitaxy growth process to rapidly grow the seeds into boules while preserving the seed's structural quality and improving its purity.
North Carolina State University (NC State)
Program: 
Project Term: 
01/01/2012 to 03/31/2017
Project Status: 
ALUMNI
Project State: 
North Carolina
Technical Categories: 

North Carolina State University (NC State) will genetically modify the oil-crop plant Camelina sativa to produce high quantities of both modified oils and terpenes. These components are optimized for thermocatalytic conversion into energy-dense drop-in transportation fuels. The genetically engineered Camelina will capture more carbon than current varieties and have higher oil yields. The Camelina will be more tolerant to drought and heat, which makes it suitable for farming in warmer and drier climate zones in the US. The increased productivity of NC State's enhanced Camelina and the development of energy-effective harvesting, extraction, and conversion technology could provide an alternative non-petrochemical source of fuel.

North Carolina State University (NC State)
Program: 
Project Term: 
10/01/2018 to 03/31/2021
Project Status: 
ACTIVE
Project State: 
North Carolina
Technical Categories: 

North Carolina State University (NC State) will develop a highly automated management and control system for advanced nuclear reactors. The system will provide operations recommendations to staff during all modes of plant operation except shutdown operations. Using an artificial-intelligence (AI) guided system enabling continuous extensive monitoring of plant status, knowledge of current component status, and plant parameter trends, the system will continuously predict near-term behavior within the plant and recommend a course of action to plant personnel. If successful, this comprehensive, knowledge-based control system for credible, consistent management of plant operations will improve safety and optimize emergency management in advanced reactors. AI-guided models trained on data from plant monitoring instruments combined with expectations generated by advanced modeling and simulation can vastly improve the effectiveness of plant diagnosis and prognosis in plant management, as well as enable vulnerability search in safety analysis. In particular, the system will greatly increase the time available before operator action is required. This means that a significantly smaller operational staff--assisted by instrumentation, operator training, and smart procedures--is needed to manage the plant, reducing overall operational cost.

North Carolina State University (NC State)
Program: 
Project Term: 
07/01/2010 to 12/31/2014
Project Status: 
ALUMNI
Project State: 
North Carolina
Technical Categories: 

North Carolina State University (NC State) is working with the University of Georgia to create electrofuels from primitive organisms called extremophiles that evolved before photosynthetic organisms and live in extreme, hot water environments with temperatures ranging from 167-212 degrees Fahrenheit. The team is genetically engineering these microorganisms so they can use hydrogen to turn carbon dioxide directly into alcohol-based fuels. High temperatures are required to distill the biofuels from the water where the organisms live, but the heat-tolerant organisms will continue to thrive even as the biofuels are being distilled--making the fuel-production process more efficient. The microorganisms don't require light, so they can be grown anywhere--inside a dark reactor or even in an underground facility.

Program: 
Project Term: 
12/11/2009 to 03/30/2012
Project Status: 
ALUMNI
Project State: 
North Carolina
Technical Categories: 

Phononic Devices is working to recapture waste heat and convert it into usable electric power. To do this, the company is using thermoelectric devices, which are made from advanced semiconductor materials that convert heat into electricity or actively remove heat for refrigeration and cooling purposes. Thermoelectric devices resemble computer chips, and they manage heat by manipulating the direction of electrons at the nanoscale. These devices aren't new, but they are currently too inefficient and expensive for widespread use. Phononic Devices is using a high-performance, cost-effective thermoelectric design that will improve the device's efficiency and enable electronics manufacturers to more easily integrate them into their products.

Research Triangle Institute (RTI)
Program: 
Project Term: 
07/01/2010 to 09/30/2013
Project Status: 
ALUMNI
Project State: 
North Carolina
Technical Categories: 

Research Triangle Institute (RTI) is developing a solvent and process that could significantly reduce the temperature associated with regenerating solvent and CO2 captured from the exhaust gas of coal-fired power plants. Traditional CO2 removal processes using water-based solvents require significant amount of steam from power plants in order to regenerate the solvent so it can be reused after each reaction. RTI's solvents can be better at absorbing CO2 than many water-based solvents, and are regenerated at lower temperatures using less steam. Thus, industrial heat that is normally too cool to re-use can be deployed for regeneration, rather than using high-value steam. This saves the power plant money, which results in increased cost savings for consumers.

Research Triangle Institute (RTI)
Program: 
Project Term: 
04/10/2017 to 04/09/2020
Project Status: 
ACTIVE
Project State: 
North Carolina
Technical Categories: 
Research Triangle Institute (RTI) will develop a catalytic technology for converting renewable energy, water, and air into ammonia. Their work focuses on three innovations: the development of an ammonia synthesis catalyst for improved reactions, refinement of the ammonia synthesis to handle intermittent loads, and optimized and scalable technologies for air separation to produce high-purity nitrogen. Their ammonia synthesis catalyst features increased surface area, high dispersion, and high thermal stability - enabling the system to operate at much lower temperatures and pressures, lowering energy consumption by 35%. It also reduces the balance of plant costs by simplifying the design and decreasing refrigeration loads. By using low-cost nitrogen purification techniques, they aim to lower the cost and amount of nitrogen required. When completed, the project will result in a small-scale ammonia synthesis system that is economically viable and can start and stop in synchronization with intermittent renewable power sources.
Research Triangle Institute (RTI)
Program: 
Project Term: 
03/15/2013 to 06/30/2017
Project Status: 
ALUMNI
Project State: 
North Carolina
Technical Categories: 
Research Triangle Institute (RTI) is leveraging existing engine technology to develop a compact reformer for natural gas conversion. Reformers produce synthesis gas--the first step in the commercial process of converting natural gas to liquid fuels. As a major component of any gas-to-liquid plant, the reformer represents a substantial cost. RTI's re-designed reformer would be compact, inexpensive, and easily integrated with small-scale chemical reactors. RTI's technology allows for significant cost savings by harnessing equipment that is already manufactured and readily available. Unlike other systems that are too large to be deployed remotely, RTI's reformer could be used for small, remote sources of gas.
Program: 
Project Term: 
02/06/2014 to 03/06/2017
Project Status: 
ALUMNI
Project State: 
North Carolina
Technical Categories: 
Research Triangle Institute (RTI) is developing a high-quality concentrating solar thermal energy transport and storage system for use in light metals manufacturing. A challenge with integrating renewable energy into light metals manufacturing has been the need for large quantities of very high temperature heat. RTI's technology overcomes this challenge with a specialized heat transfer powder. This powder can be heated to temperatures of 1100 degrees Celsius with concentrating solar thermal energy, some 400 degrees Celsius higher than conventional solutions. Because the heat transfer fluid can also store thermal energy, metal manufacturing plants can continue to operate even when the sun is not shining. RTI will also develop advanced materials that will protect the system's components from the accelerated degradation experienced at these high operating temperatures. This technology will enable constant, high-temperature operation of the light metals production process with reduced CO2 emissions.
Research Triangle Institute (RTI)
Program: 
Project Term: 
01/01/2010 to 09/30/2013
Project Status: 
ALUMNI
Project State: 
North Carolina
Technical Categories: 
Research Triangle Institute (RTI) is developing a new pyrolysis process to convert second-generation biomass into biofuels in one simple step. Pyrolysis is the decomposition of substances by heating--the same process used to render wood into charcoal, caramelize sugar, and dry roast coffee and beans. RTI's catalytic biomass pyrolysis differs from conventional flash pyrolysis in that its end product contains less oxygen, metals, and nitrogen--all of which contribute to corrosion, instability, and inefficiency in the fuel-production process. This technology is expected to easily integrate into the existing domestic petroleum refining infrastructure, making it an economically attractive option for biofuels production.
Program: 
Project Term: 
02/01/2016 to 06/30/2017
Project Status: 
CANCELLED
Project State: 
North Carolina
Technical Categories: 
Sencera Energy and Ohio University will develop a novel kinematic Stirling-Brayton hybrid engine using flexure based volume displacement in lieu of a conventional piston-cylinder Stirling engine. A Stirling engine uses a working gas housed in a sealed environment, in this case the working gas is helium. When heated by the natural gas-fueled burner, the gas expands causing a piston to move and interact with an alternator to produce electricity. As the gas cools and contracts, the process resets before repeating again. Advanced Stirling engines endeavor to carefully manage heat inside the system to make the most efficient use of the natural gas energy. The flexure-based design achieves the same function as a piston-cylinder set by simply changing the volume of the working spaces, as opposed to sliding a piston along the interior of a cylinder. The removal of pistons from the design eliminates the need for sliding seals such as piston rings or air/gas bearings, resulting in lower engine friction, less fluid flow loss and fewer dead volumes. It also lowers the potential fabrication cost compared to other heat engines. The proposed kinematic engine design provides easy coupling to existing rotary alternator designs, which allows the use of robust, mature, and cost-effective off-the-shelf alternator technologies and controllers.