Sorry, you need to enable JavaScript to visit this website.

ARPA-E Projects

Search ARPA-E Projects by Keyword

Displaying 1 - 19 of 19
Applied Research Associates (ARA)
Program: 
Project Term: 
09/01/2015 to 02/28/2019
Project Status: 
ALUMNI
Project State: 
New Mexico
Technical Categories: 
Applied Research Associates (ARA) will design and fabricate a dry-cooling system that overcomes the inherent thermodynamic performance penalty of air-cooled systems, particularly under high ambient temperatures. ARA's ACTIVE cooling technology uses a polymerization thermochemical cycle to provide supplemental cooling and cool storage that can work as a standalone system or be synchronized with air-cooled units to cool power plant condenser water. The cool storage will be completed in two stages. During the day, the cool storage is maintained near the ambient temperature, and then at night the remainder of cooling can be done using the low temperature nighttime air. The cool storage unit is then ready for plant condenser reuse the next day. This technology will provide power plant condensers with return water at the necessary temperature levels to maintain power production at their optimum thermal efficiency.
Program: 
Project Term: 
03/10/2014 to 06/30/2019
Project Status: 
ALUMNI
Project State: 
New Mexico
Technical Categories: 

iBeam Materials is developing a scalable manufacturing method to produce low-cost gallium nitride (GaN) LED devices for use in solid-state lighting. iBeam Materials uses an ion-beam crystal-aligning process to create single-crystal-like templates on arbitrary substrates thereby eliminating the need for small rigid single-crystal substrates. This process is inexpensive, high-output, and allows for large-area deposition in particular on flexible metal foils. In using flexible substrates, in contrast to rigid single-crystal wafers, the ion-aligning process also enables roll-to-roll (R2R) processing of crystalline films. R2R processing in turn simplifies manufacturing scale-up by reducing equipment footprint and associated labor costs By fabricating the LED directly on a metal substrate, one "pre-packages" the LED with the reflector and the heat sink built-in. This significantly reduces cost, simplifies packaging and allows a pick-and-place (P&P) technology to be replaced with printing of LEDs.

Program: 
Project Term: 
01/10/2017 to 05/09/2019
Project Status: 
ALUMNI
Project State: 
New Mexico
Technical Categories: 

IR Dynamics will develop a low-cost nanomaterial technology to be incorporated into flexible window films that will improve thermal insulation and solar heat gain. The team's nanomaterial will incorporate two materials. First, low-cost nanosheets will increase thermal resistance. Second, a new type of nanomaterial will allow heat, in the form of infrared radiation (IR) from the sun, to pass through the window when it is cold outside, helping to warm the room in cold weather. When it is hot outside, the material will block the solar IR from passing through the window and warming the interior. This same material reflects thermal radiation and displays a tunable emissivity, contributing more to its insulation value and energy retention. The dynamic IR reflectivity and emissivity are passive by nature, requiring no electronics or power source to shift, and only rely on environmental temperature changes. IR Dynamics' technology creates a window film that automatically adjusts depending on outside temperatures and can have a substantive impact in performance on single-pane and older variants of double-pane windows.

Program: 
Project Term: 
07/29/2019 to 07/29/2022
Project Status: 
ACTIVE
Project State: 
New Mexico
Los Alamos National Laboratory (LANL)
Program: 
Project Term: 
04/25/2019 to 04/24/2022
Project Status: 
ACTIVE
Project State: 
New Mexico
Los Alamos National Laboratory (LANL)
Program: 
Project Term: 
08/01/2015 to 12/31/2019
Project Status: 
ACTIVE
Project State: 
New Mexico
Technical Categories: 
Los Alamos National Laboratory (LANL), along with HyperV Technologies and other partners, will design and build a new driver technology that is non-destructive, allowing for more rapid experimentation and progress toward economical fusion power. The team will use a spherical array of plasma guns to produce supersonic jets that merge to create an imploding plasma liner. Because the guns are located several meters away from the fusion burn region (i.e., they constitute a "standoff driver"), the reactor components should not be damaged by repeated experiments. This will allow the team to perform more rapid experimentation, allowing them to better understand the behavior of plasma liners as they implode. If successful, the project will demonstrate the validity of this driver design, optimize the precision and performance of the plasma guns, and obtain experimental data on ram-pressure scaling and liner uniformity critical to progress toward an economical fusion reactor.
Program: 
Project Term: 
10/01/2015 to 10/31/2018
Project Status: 
ALUMNI
Project State: 
New Mexico
Technical Categories: 

NumerEx will develop a Stabilized Liner Compressor (SLC) which uses a liquid metal liner for non-destructive experimentation and operation, meaning the liner implosion is quickly repeatable. The SLC uses a rotating chamber, in which liquid metal is formed into a hollow cylinder. The liquid is pushed by pistons driven by high-pressure gas, collapsing the inner surface around a target on the axis. The rotation of the liquid liner avoids instabilities that would otherwise occur during compression of the plasma. After each experiment, the liquid liner can flow back to its original position for subsequent implosion. In the NumerEx team's conceptual design for a power plant, the liquid liner acts as a blanket absorbing radiation from fusion reactions, reducing damage to the reactor hardware and creating fusion fuel for future reactor operation. Additionally, energy from the recoil of the liner and piston can be captured and reused, making the power plant design more efficient.

Program: 
Project Term: 
05/01/2016 to 10/30/2019
Project Status: 
ACTIVE
Project State: 
New Mexico
Technical Categories: 

The team led by Pajarito Powder will develop a reversible hydrogen electrode that would enable cost-effective hydrogen production and reversible fuel cells. Both electrolyzers and fuel cells, generally operate in acidic conditions that rely on expensive precious metal catalysts to avoid corrosion. Running the electrochemical cell in alkaline conditions reduces the requirements for the oxygen electrode, but effective and inexpensive electrocatalysts for the hydrogen electrode still need to be developed. This project aims to develop a bi-functional (i.e. two way) low-cost catalyst that runs in alkaline conditions capable of oxidizing or reducing hydrogen depending on whether power is needed immediately, or needs to be stored. By integrating the electrolyzer and fuel cell into one system, the overall cost could be drastically reduced, which would open an entire suite of new applications including grid load-leveling and long-term energy storage applications. The system will be compatible with intermittent energy sources because it can operate at lower temperatures than competiting technologies, thus allowing startup times on the order of seconds.

Program: 
Project Term: 
08/15/2015 to 11/24/2018
Project Status: 
ALUMNI
Project State: 
New Mexico
Technical Categories: 
Sandia National Laboratories will partner with the Laboratory for Laser Energetics at the University of Rochester to investigate the behavior of the magnetized plasma under fusion conditions, using a fusion concept known as Magnetized Liner Inertial Fusion (MagLIF). MagLIF uses lasers to pre-heat a magnetically insulated plasma in a metal liner and then compresses the liner to achieve fusion. The research team will conduct experiments at Sandia's large Z facility as well as Rochester's OMEGA facilities, and will collect key measurements of magnetized plasma fuel including temperature, density, and magnetic field over time. The results will help researchers improve compression and heating performance. By using the smaller OMEGA facility, researchers will be able to conduct experiments more rapidly, speeding the learning process and validating the MagLIF approach. Sandia's team will also use their experimental results to validate and expand a suite of simulation and numerical design tools to improve future fusion energy applications that employ magnetized inertial fusion concepts. This project will help accelerate the development of the MagLIF concept, and assist with the continued development of intermediate density approaches across the ALPHA program.
Program: 
Project Term: 
04/01/2012 to 01/16/2015
Project Status: 
ALUMNI
Project State: 
New Mexico
Technical Categories: 
Sandia National Laboratories is working with several commercial and university partners to develop software for market management systems (MMSs) that enable greater use of renewable energy sources throughout the grid. MMSs are used to securely and optimally determine which energy resources should be used to service energy demand across the country. Contributions of electricity to the grid from renewable energy sources such as wind and solar are intermittent, introducing complications for MMSs, which have trouble accommodating the multiple sources of price and supply uncertainties associated with bringing these new types of energy into the grid. Sandia's software will bring a new, probability-based formulation to account for these uncertainties. By factoring in various probability scenarios for electricity production from renewable energy sources in real time, Sandia's formula can reduce the risk of inefficient electricity transmission, save ratepayers money, conserve power, and support the future use of renewable energy.
Sandia National Laboratories
Program: 
Project Term: 
12/21/2016 to 12/20/2017
Project Status: 
ALUMNI
Project State: 
New Mexico
Technical Categories: 

Sandia National Laboratories will develop a prototype DC-DC converter in a modular, scalable, mass-producible format that is capable of 10kW or greater and could fit onto a single circuit board. Inefficiency and construction costs associated with AC distribution/transmission and DC-AC conversion are motivating many to consider direct connection of PV to DC distribution (and even DC transmission) circuits. The prototype proposed in this project would enable PV panels to be connected to a medium-to-high voltage DC distribution circuit using a power converter about the size of an average textbook. The team will demonstrate a high-voltage, high-power density, hybrid switched-capacitor power conversion circuit that relies on the concurrent use of silicon carbide (SiC) active switches and leading-edge, 1200V rated, vertical gallium nitride (GaN) diodes. Both SiC and GaN have individually led to improvements in converter performance that permits higher switching frequencies, blocking voltages, and operating temperatures. The team plans to exploit the use of SiC switches coupled with GaN diodes, utilizing the benefits of both materials to achieve improved power density and better performance. These devices would enable improved efficiency and small size, which would reduce assembly, transportation, and installation costs. The proposed circuit topology would be scalable to 100s of kW and 10s of kV, enabling a whole string of modules in a PV plant to be connected to a DC distribution circuit through a converter of about the size of a midsize microwave oven. The converter can be applied to other renewable sources, but in particular, this technology could greatly accelerate the adoption of PV onto the grid by enabling cheaper and more efficient medium voltage and high voltage DC distribution networks.

Program: 
Project Term: 
05/01/2017 to 10/31/2018
Project Status: 
ALUMNI
Project State: 
New Mexico
Technical Categories: 

Sandia National Laboratories will develop a new type of switch, a 100kV optically controlled switch (often called photoconductive semiconductor switch or PCSS), based on the WBG semiconductors GaN and AlGaN. The capabilities of the PCSS will be demonstrated in high-voltage circuits for medium and high voltage direct current (MVDC/HVDC) power conversion for grid applications. Photoconductivity is the measure of a material's response to the energy inherent in light radiation. The electrical conductivity of a photoconductive material increases when it absorbs light. The team will first measure the photoconductive properties of GaN and AlGaN in order to assess if they operate similarly to gallium arsenide, a conventional semiconductor material used for PCSS, demonstrating sub-bandgap optical triggering and low-field, high-gain avalanche providing many times as many carriers by the electric field as created by the optical trigger. These two effects provide a tremendous reduction in the optical trigger energy required to activate the switch. The team will then design and fabricate GaN and AlGaN-based photoconductive semiconductor switches. The team predicts that WBG PCSS will outperform their predecessors with higher switch efficiency, the ability to switch at higher voltages, and will turn-off and recover faster, allowing for a higher frequency of switching. Ultimately, this will enable high-voltage switch assemblies (50-500kV) that can be triggered from a single, small driver (e.g. semiconductor laser). These modules will be substantially smaller (~10x) and simpler than existing modules used in grid-connected power electronics, allowing the realization of inexpensive and efficient switch modules that can be used in DC to AC power conversion systems on the grid at distribution and transmission scales.

Sandia National Laboratories
Program: 
Project Term: 
07/05/2017 to 01/04/2020
Project Status: 
ACTIVE
Project State: 
New Mexico
Technical Categories: 

Sandia National Laboratories will develop novel, field-deployable sensor technologies for monitoring soil, root, and plant systems. First, the team will develop microneedles similar and shape and function to hypodermic needles used in transdermal drug delivery and wearable sensors. The minimally invasive needles will be used to report on sugar concentrations and water stress in leaves, stems, and large roots in real-time. Continuously monitoring the sugar concentrations at multiple locations will be transformative in understanding whole plant carbon dynamics and the function of the vascular tissues that conduct sugars and other metabolic products downward from the leaves. The second key technology are gas chromatographs deployed in the soil and near plants in order to monitor volatile organic compounds (VOC). Plants synthesize and release volatile organic compounds both aboveground and belowground that act as chemical signals or in response to biotic stress (damage from insects, bacteria, etc.) or abiotic stress (such as drought, flooding, and extreme temperatures). VOCs modulate biomass uptake and the team hopes to better understand soil composition by measuring VOC transport. The team's integrated microsensor technologies will be deployed in arid environments in both natural and agricultural lands to characterize whole plant function in both environments. Applying these sensors to plants in arid environments could assist in re-greening arid ecosystems with new specially bred plants developed and selected to improve soil function with less water and nutrient requirements while depositing more soil carbon.

Sandia National Laboratories
Program: 
Project Term: 
09/08/2017 to 05/14/2020
Project Status: 
ACTIVE
Project State: 
New Mexico
Technical Categories: 

Vertical transistors based on bulk gallium nitride (GaN) have emerged as promising candidates for future high efficiency, high power applications. However, they have been plagued by poor electrical performance attributed to the existing selective doping processes. Sandia National Laboratories will develop patterned epitaxial regrowth of GaN as a selective area doping processes to fabricate diodes with electronic performance equivalent to as-grown state-of-the-art GaN diodes. The team's research will provide a better understanding of which particular defects resulting from impurities and etch damage during the epitaxial regrowth process limit device performance, how those defects specifically impact the junction electronic properties, and ultimately how to control and mitigate the defects. The improved mechanistic understanding developed under the project will help the team design specific approaches to controlling impurity contamination and defect incorporation at regrowth interfaces and include development of in-chamber cleans and regrowth initiation processes to recover a high-quality epitaxial surfaces immediately prior to crystal regrowth.

Program: 
Project Term: 
05/06/2019 to 05/06/2022
Project Status: 
ACTIVE
Project State: 
New Mexico
Program: 
Project Term: 
07/11/2019 to 07/10/2022
Project Status: 
ACTIVE
Project State: 
New Mexico
Program: 
Project Term: 
06/17/2019 to 06/16/2022
Project Status: 
ACTIVE
Project State: 
New Mexico
Program: 
Project Term: 
05/02/2016 to 08/29/2017
Project Status: 
CANCELLED
Project State: 
New Mexico
Technical Categories: 

Tibbar Technologies will develop plasma-based AC to DC converters for a variety of applications, including DC power for commercial buildings and for High Voltage Direct Current (HVDC) electrical transmission. A plasma is created when a gas absorbs enough energy to separate the electrons from the nuclei, making it susceptible to electric and magnetic fields. In this project the team will develop a converter based principally on a single plasma component, rather than a system of capacitors and semiconductor switches. The concept is based on a recently discovered plasma configuration that utilizes helical electrodes along the perimeter of the plasma chamber to induce a current along the axis of the plasma. The current induced along the axis produces an output voltage and current at the ends of the plasma chamber, which enables efficient conversion of AC to DC or DC to DC. The project team seeks to develop a robust, economical plasma device to convert 3-phase AC to high quality DC. These devices have the potential to be half the cost and yield power densities 10x higher than state-of-the-art converters, and have the potential to significantly improve electrical use efficiencies in power transmission, distribution, micro-grids, datacenters, and in large, electrified platforms for transportation such as ships and trains.

University of New Mexico
Program: 
Project Term: 
03/22/2016 to 10/22/2019
Project Status: 
ACTIVE
Project State: 
New Mexico
Technical Categories: 

The team led by the University of New Mexico will develop a modular electrochemical process for a power-to-fuel system that can synthesize ammonia directly from nitrogen and water. The proposed synthesis approach will combine chemical and electrochemical steps to facilitate the high-energy step of breaking the nitrogen-nitrogen bond, with projected conversion efficiencies above 70%. By operating at lower temperature and pressure and reducing the air-separation requirement, this technology reduces overall system complexity, thus potentially enabling smaller-scale production at equal or lower costs. Furthermore, the smaller-scale process does not need consistent, baseload power to operate and therefore could be compatible with intermittent renewable energy sources, placing it on a path to be carbon-neutral.