Sorry, you need to enable JavaScript to visit this website.

ARPA-E Projects

Search ARPA-E Projects by Keyword

Displaying 1 - 21 of 21
Program: 
Project Term: 
09/01/2010 to 07/31/2014
Project Status: 
ALUMNI
Project State: 
Ohio
Technical Categories: 
ADMA Products is developing a foil-like membrane for air conditioners that efficiently removes moisture from humid air. ADMA Products' metal foil-like membrane consists of a paper-thin, porous metal sheet coated with a layer of water-loving molecules. This new membrane allows water vapor to permeate across the membrane at high fluxes, at the same time blocking air penetration and resulting in high selectivity. The high selectivity of the membrane translates to less energy use, while the high permeation fluxes result in a more compact device. The new materials and the flat foil-like nature of the membrane facilitate the mass production of a low-cost compact dehumidification device. ADMA received a separate award of up to $466,176 from the Department of the Navy to help decrease military fuel use.
Algaeventure Systems (AVS)
Program: 
Project Term: 
01/15/2010 to 01/31/2012
Project Status: 
ALUMNI
Project State: 
Ohio
Technical Categories: 
Led by CEO Ross Youngs, Algaeventure Systems (AVS) has patented a cost-effective dewatering technology that separates micro-solids (algae) from water. Separating micro-solids from water traditionally requires a centrifuge, which uses significant energy to spin the water mass and force materials of different densities to separate from one another. In a comparative analysis, dewatering 1 ton of algae in a centrifuge costs around $3,400. AVS's Solid-Liquid Separation (SLS) system is less energy-intensive and less expensive, costing $1.92 to process 1 ton of algae. The SLS technology uses capillary dewatering with filter media to gently facilitate water separation, leaving behind dewatered algae which can then be used as a source for biofuels and bio-products. The biomimicry of the SLS technology emulates the way plants absorb and spread water to their capillaries.
Program: 
Project Term: 
11/01/2012 to 09/30/2014
Project Status: 
ALUMNI
Project State: 
Ohio
Technical Categories: 
Battelle Memorial Institute is developing an optical sensor to monitor the internal environment of lithium-ion (Li-Ion) batteries in real-time. Over time, crystalline structures known as dendrites can form within batteries and cause a short circuiting of the battery's electrodes. Because faults can originate in even the tiniest places within a battery, they are hard to detect with traditional sensors. Battelle is exploring a new, transformational method for continuous monitoring of operating Li-Ion batteries. Their optical sensors detect internal faults well before they can lead to battery failures or safety problems. The Battelle team will modify a conventional battery component to scan the cell's interior, watching for internal faults to develop and alerting the battery management system to take corrective action before a hazardous condition occurs.
Program: 
Project Term: 
09/01/2010 to 12/30/2011
Project Status: 
ALUMNI
Project State: 
Ohio
Technical Categories: 
Battelle Memorial Institute is developing a new air conditioning system that uses a cascade reverse osmosis-based absorption cycle. Analyses show that this new cycle can be as much as 60% more efficient than vapor compression, which is used in 90% of air conditioners. Traditional vapor-compression systems use polluting liquids for a cooling effect. Absorption cycles use benign refrigerants such as water, which is absorbed in a salt solution and pumped as liquid--replacing compression of vapor. The refrigerant is subsequently separated from absorbing salt using heat for re-use in the cooling cycle. Battelle is replacing thermal separation of refrigerant with a more efficient reverse osmosis process. Research has shown that the cycle is possible, but further investment will be needed to reduce the number of cascade reverse osmosis stages and therefore cost.
Case Western Reserve University
Program: 
Project Term: 
01/01/2014 to 06/30/2016
Project Status: 
ALUMNI
Project State: 
Ohio
Technical Categories: 
Case Western Reserve University is developing a specialized electrochemical cell that produces titanium from titanium salts using a series of layered membranes. Conventional titanium production is expensive and inefficient due to the high temperatures and multiple process steps required. The Case Western concept is to reduce the energy required for titanium metal production using an electrochemical reactor with multiple, thin membranes. The multi-membrane concept would limit side reactions and use one third of the energy required by today's production methods.
Case Western Reserve University
Program: 
Project Term: 
01/09/2013 to 02/11/2019
Project Status: 
ALUMNI
Project State: 
Ohio
Technical Categories: 

Case Western Reserve University is developing a water-based, all-iron flow battery for grid-scale energy storage at low cost. Flow batteries store chemical energy in external tanks instead of within the battery container. Using iron provides a low-cost, safe solution for energy storage because iron is both abundant and non-toxic. This design could drastically improve the energy storage capacity of stationary batteries at 10-20% of today's cost. Ultimately, this technology could help reduce the cost of stationary energy storage enough to facilitate the adoption and deployment of renewable energy technology.

Case Western Reserve University
Program: 
Project Term: 
09/01/2010 to 11/30/2012
Project Status: 
ALUMNI
Project State: 
Ohio
Technical Categories: 
There is a constant demand for better performing, more compact, lighter-weight, and lower-cost electronic devices. Unfortunately, the materials traditionally used to make components for electronic devices have reached their limits. Case Western Reserve University is developing capacitors made of new materials that could be used to produce the next generation of compact and efficient high-powered consumer electronics and electronic vehicles. A capacitor is an important component of an electronic device. It stores an electric charge and then discharges it into an electrical circuit in the device. Case Western is creating its capacitors from titanium, an abundant material extracted from ore which can be found in the U.S. Case Western's capacitors store electric charges on the surfaces of films, which are grown on a titanium alloy electrode that is formed as a spinal column with attached branches. The new material and spine design make the capacitor smaller and lighter than traditional capacitors, and they enable the component to store 300% more energy than capacitors of the same weight made of tantalum, the current industry standard. Case Western's titanium-alloy capacitors also spontaneously self-repair, which prolongs their life.
Case Western Reserve University
Program: 
Project Term: 
01/01/2012 to 06/30/2015
Project Status: 
ALUMNI
Project State: 
Ohio
Technical Categories: 
Case Western Reserve University is developing a highly magnetic iron-nitride alloy to use in the magnets that power electric motors found in EVs and renewable power generators. This would reduce the overall price of the motor by eliminating the expensive imported rare earth minerals typically found in today's best commercial magnets. The iron-nitride powder is sourced from abundant and inexpensive materials found in the U.S. The ultimate goal of this project is to demonstrate this new magnet system, which contains no rare earths, in a prototype electric motor. This could significantly reduce the amount of greenhouse gases emitted in the U.S. each year by encouraging the use of clean alternatives to oil and coal.
Case Western Reserve University
Program: 
Project Term: 
05/10/2016 to 12/31/2019
Project Status: 
ACTIVE
Project State: 
Ohio
Technical Categories: 

Case Western Reserve University will develop a data analytics approach to building-efficiency diagnosis and prognostics. Their tool, called EDIFES (Energy Diagnostics Investigator for Efficiency Savings), will not require complex or expensive computational simulation, physical audits, or building automation systems. Instead, the tool will map a building's energy signature through a rigorous analysis of multiple datastreams. Combining knowledge of specific climatic, weather, solar insolation, and utility meter data through data assembly, the team will analyze these time-series datastreams to reveal patterns and relationships that were previously ignored or neglected. EDIFES will provide a virtual energy audit combined with a predictive energy usage calculator for efficiency solutions without setting foot in a building. The team's goal is to design EDIFES in such a way that beyond time-series, whole building utility data, only minimal information will be required from the building owner for accurate virtual energy audits that identify efficiency problems and solutions and provide continuous efficiency monitoring. EDIFES will be a resource for equipment providers and contractors to illustrate replacement equipment value, a mechanism for utilities to measure the impact of energy efficiency programs, and a tool for financiers to evaluate the potential risk and opportunity of efficiency investments. EDIFES will target the light commercial building space where minimal tools are available and a high potential for savings exists.

Program: 
Project Term: 
01/31/2018 to 01/30/2021
Project Status: 
ACTIVE
Project State: 
Ohio
Technical Categories: 

Eaton will develop and validate a wireless-power-based computer server supply that enables distribution of medium voltage (AC or DC) throughout a datacenter and converts it to the 48V DC used by computer servers. Datacenters require multiple voltage conversions steps, reducing the efficiency of power distribution from the grid to the server. The converter will employ commercially available wide-bandgap power devices for both the medium-voltage transmitter circuit and the low-voltage receiver circuit, respectively. The heart of the medium voltage supply is the wireless power transfer transformer, which will eliminate the multiple conversion stages present at datacenter locations all while providing operators touch-safe isolation from the medium input voltage side. If successful, the technology can reduce U.S. datacenter energy consumption and operations costs. It will eliminate the need of some transformers and reduce copper use in conductors providing a significant cost and space savings when medium voltage distribution is used.

Program: 
Project Term: 
01/01/2013 to 03/31/2016
Project Status: 
ALUMNI
Project State: 
Ohio
Technical Categories: 
Eaton is developing advanced battery and vehicle systems models that will enable fast, accurate estimation of battery health and remaining life. The batteries used in hybrid vehicles are highly complex and require advanced management systems to maximize their performance. Eaton's battery models will be coupled with hybrid powertrain control and power management systems of the vehicle enabling a broader, more comprehensive vehicle management system for better optimization of battery life and fuel economy. Their design would reduce the sticker price of commercial hybrid vehicles, making them cost-competitive with non-hybrid vehicles.
Program: 
Project Term: 
01/01/2013 to 12/31/2015
Project Status: 
ALUMNI
Project State: 
Ohio
Technical Categories: 
Eaton is developing an at-home natural gas refueling system that relies on a liquid piston to compress natural gas. A traditional compressor uses an electric motor to rotate a crankshaft, which is tied to several metal pistons that pump to compress gas. Traditional compressor systems can be inefficient and their complex components make them expensive to manufacture, difficult to maintain, and short-lived. Eaton's system replaces traditional pistons with a liquid that comes into direct contact with the natural gas without the need for the costly high-pressure piston seals that are used in conventional gas compression.
Eaton Corporation
Program: 
Project Term: 
09/01/2016 to 08/31/2019
Project Status: 
CANCELLED
Project State: 
Ohio
Technical Categories: 

Eaton will develop and validate a disruptive cloud-computing-based technology aimed at providing agile and robust synthetic regulating reserve services to the power grid. This approach separates the decision-making of synthetic regulating reserve services into two-levels to significantly reduce the computational complexity, thereby enabling large-scale coordinated control of a vast number of DERs and flexible load. The system-operator level estimates and predicts reserve capacity of the distribution network and decides on the appropriate economic incentives for DERs to participate in future services. At the local level, an energy node comprised of a cluster of DERs and flexible loads will automatically decide its own reserve services strategy that takes into account short-term net load and economic incentives. By splitting these decisions between the two levels, the solution does not require extensive communication or negotiation between the local DERs and the system operators in the cloud.

Program: 
Project Term: 
05/01/2019 to 04/30/2022
Project Status: 
ACTIVE
Project State: 
Ohio
The Echogen Power Systems team will develop an energy storage system that uses a carbon dioxide (CO2) heat pump cycle to convert electrical energy into thermal energy by heating a "reservoir" of low-cost materials such as sand or concrete. During the charging cycle, the reservoir will store the heat that will be converted into electricity on demand in the discharge or generating cycle. To generate power, liquid CO2 will be pumped to a supercritical pressure and brought to a higher temperature using the stored heat from the reservoir. Finally, the supercritical CO2 will be used to expand through a turbine to generate electricity during the discharge cycle.
Program: 
Project Term: 
12/01/2009 to 11/03/2011
Project Status: 
CANCELLED
Project State: 
Ohio
Technical Categories: 

Inorganic Specialists' project consists of material and manufacturing development for a new type of Li-Ion battery material, a silicon-coated paper. Silicon-based batteries are advantageous due to silicon's ability to store large amounts of energy. Yet, the technology has not been able to withstand multiple charge/discharge cycles. The thinner the silicon-based material, the better it can handle multiple charge/discharge cycles. Inorganic Specialists' extremely thin silicon-coated paper can store 4 times more energy than existing Li-Ion batteries. The team is improving manufacturing capability in two key areas: 1) expanding existing papermaking equipment to continuously produce the silicon-coated paper, and 2) creating machinery that will silicon-coat the paper via a moving process, to demonstrate manufacturing feasibility. These manufacturing improvements could meet the energy storage criteria required for multiple charge/discharge cycles. Inorganic Specialists' silicon-coated paper's properties have the potential to make it a practical, cost-effective transformative Li-Ion battery material.

Program: 
Project Term: 
05/24/2018 to 05/23/2020
Project Status: 
ACTIVE
Project State: 
Ohio
Technical Categories: 
Nexceris, LLC will develop a compact, ultra-high efficiency solid oxide fuel cell (SOFC) stack tailored for hybrid power systems. Hybridized power generation systems, combining energy efficient SOFCs with a microturbine or internal combustion (IC) engine, offer a path to high efficiency distributed generation from abundant natural gas. Proof-of-concept systems have shown the potential of this hybrid approach, but component optimization is necessary to increase system efficiencies and reduce costs. Existing SOFC stacks are relatively expensive and improving their efficiency and robustness would enhance the overall commercial viability of these systems. Nexceris' SOFC stack design includes a patented high performance planar cell design and a novel anode current collector that that provides structural support to each cell during pressurized operation, helps define the flow of fuel gas through the stack, and improves control over the reaction of natural gas in the cell, and a sealing approach that facilitates pressurized stack operation. If successful, this stack design will result in increased performance and durability at reduced cost. The 10-kW-scale cell stack building blocks will be housed within a hermetically sealed "hotbox" to reduce drastic changes in temperature and pressure during operation. These design features would allow for seamless integration with a turbine or combustion engine to maximize the overall efficiency of a hybrid system.
Program: 
Project Term: 
12/01/2015 to 12/31/2019
Project Status: 
ACTIVE
Project State: 
Ohio
Technical Categories: 
Sunpower, in partnership with Aerojet Rocketdyne and Precision Combustion Inc. (PCI), proposes a high-frequency, high efficiency 1 kW free-piston Stirling engine (FPSE). A Stirling engine uses a working gas such as helium, which is housed in a sealed environment. When heated by the natural gas-fueled burner, the gas expands causing a piston to move and interact with a linear alternator to produce electricity. As the gas cools and contracts, the process resets before repeating again. Advanced Stirling engines endeavor to carefully manage heat inside the system to make the most efficient use of the natural gas energy. New innovations from this team include the highly efficient and high frequency design which reduces size and cost and can be wall mounted. The heater-head assembly acts as the heat exchanger between the burner and the enclosed working gas, and the higher temperature allows for greater efficiency. Aerojet Rocketdyne will assist this effort by developing high temperature materials to use in this process, while PCI will add a novel catalytically-assisted, two-stage, burner to maximize heat transfer to the heater-head.
Program: 
Project Term: 
03/08/2017 to 03/07/2020
Project Status: 
ACTIVE
Project State: 
Ohio
Technical Categories: 

The Ohio State University will develop and demonstrate a transformational powertrain control technology that uses vehicle connectivity and automated driving capabilities to enhance the energy consumption of a light duty passenger vehicle up-fitted with a mild hybrid system. At the core of the proposed powertrain control technology, is the use of a novel cylinder deactivation strategy called Dynamic Skip Fire which makes instantaneous decisions about which engine cylinders are fired or skipped thus significantly improving vehicle energy efficiency. Connected and automated vehicle technologies will allow route-based optimization of driving. Route terrain information including road slope, curvature, and speed limits will be used to calculate an energy-optimal speed trajectory for the vehicle. Traffic condition information based on V2I communication (such as traffic lights) will be used to further optimize route selection and optimize the vehicle and powertrain control. The vehicle will interact with traffic lights using Dedicated Short Range Communications and will stop and start from intersections using an energy-optimal speed trajectory. The integrated radar/camera sensor and V2V connectivity will be used to determine the immediate traffic around the vehicle. Finally, machine learning algorithms will be used to make intelligent powertrain and vehicle optimization decisions in continuously changing and uncertain environments.

The Ohio State University
Program: 
Project Term: 
04/01/2010 to 09/30/2014
Project Status: 
ALUMNI
Project State: 
Ohio
Technical Categories: 
The Ohio State University has developed an iron-based material and process for converting syngas--a synthetic gas mixture--into electricity, H2, and/or liquid fuel with zero CO2 emissions. Traditional carbon capture methods use chemical solvents or special membranes to separate CO2 from the gas exhaust from coal-fired power plants. Ohio State's technology uses an iron-based oxygen carrier to generate CO2 and H2 from syngas in separate, pure product streams by means of a circulating bed reactor configuration. The end products of the system are H2, electricity, and/or liquid fuel, all of which are useful sources of power that can come from coal or syngas derived from biomass. Ohio State is developing a high-pressure pilot-scale unit to demonstrate this process at the National Carbon Capture Center.
The Ohio State University
Program: 
Project Term: 
07/01/2010 to 06/30/2014
Project Status: 
ALUMNI
Project State: 
Ohio
Technical Categories: 
The Ohio State University is genetically modifying bacteria to efficiently convert carbon dioxide directly into butanol, an alcohol that can be used directly as a fuel blend or converted to a hydrocarbon, which closely resembles gasoline. Bacteria are typically capable of producing a certain amount of butanol before it becomes too toxic for the bacteria to survive. Ohio State is engineering a new strain of the bacteria that could produce up to 50% more butanol before it becomes too toxic for the bacteria to survive. Finding a way to produce more butanol more efficiently would significantly cut down on biofuel production costs and help make butanol cost competitive with gasoline. Ohio State is also engineering large tanks, or bioreactors, to grow the biofuel-producing bacteria in, and they are developing ways to efficiently recover biofuel from the tanks.
University of Cincinnati (UC)
Program: 
Project Term: 
09/08/2015 to 10/07/2019
Project Status: 
ACTIVE
Project State: 
Ohio
Technical Categories: 
University of Cincinnati (UC) researchers will develop a dry-cooling system, featuring an enhanced air-cooled condenser and a novel daytime peak-load shifting system (PLSS) that will enable dry cooling for power plants even during hot days. The team will transform a conventional air-cooled condenser by incorporating flow-modulating surfaces and modifying the tubular geometry of the system, both of which will reduce heat transfer resistance and increase the thermal surface area. Whenever the air temperature becomes too high for the air-cooled heat exchanger to be effective, the PLSS will cool the air inlet temperature back down to acceptable temperatures. This inlet air-cooler technology removes heat from the incoming air and stores it in a thermal energy storage (TES) system that incorporates phase-change materials, which can store and release heat over a range of temperatures. During periods when the ambient air is cooler, the TES will release the stored heat to the atmosphere. Together, the combined innovations could quadruple the condenser's coefficient of performance, while the system's compact design will result in a smaller footprint than other air-cooled designs.