Sorry, you need to enable JavaScript to visit this website.

ARPA-E Projects

Search ARPA-E Projects by Keyword

Displaying 1 - 8 of 8
Architectural Applications (A2)
Program: 
Project Term: 
10/15/2010 to 10/14/2011
Project Status: 
ALUMNI
Project State: 
Oregon
Technical Categories: 
Architectural Applications (A2) is developing a building moisture and heat exchange technology that leverages a new material and design to create healthy buildings with lower energy use. Commercial building owners/operators are demanding buildings with greater energy efficiency and healthier indoor environments. A2 is developing a membrane-based heat and moisture exchanger that controls humidity by transferring the water vapor in the incoming fresh air to the drier air leaving the building. Unlike conventional systems, A2 locates the heat and moisture exchanger within the depths of the building's wall to slow down the air flow and increase the surface area that captures humidity, but with less fan power. The system's integration into the wall reduces the size and demand on the air conditioning equipment and increases liable floor area flexibility.
Energy Storage Systems (ESS)
Program: 
Project Term: 
10/01/2012 to 08/30/2017
Project Status: 
ALUMNI
Project State: 
Oregon
Technical Categories: 
Energy Storage Systems (ESS) is developing a cost-effective, reliable, and environmentally friendly all-iron hybrid flow battery. A flow battery is an easily rechargeable system that stores its electrolyte--the material that provides energy--as liquid in external tanks. Currently, flow batteries account for less than 1% of the grid-scale energy storage market because of their high system costs. The ESS flow battery technology is distinguished by its cost-effective electrolytes, based on earth-abundant iron, and its innovative battery hardware design that dramatically increases power density and enables a smaller and less costly battery. Creating a high-performing and low-cost storage system would enable broad adoption of distributed energy storage systems and help bring more renewable energy technologies--such as wind and solar--onto the grid.
Program: 
Project Term: 
10/01/2012 to 01/14/2018
Project Status: 
ALUMNI
Project State: 
Oregon
Technical Categories: 

OnBoard Dynamics is modifying a passenger vehicle to allow its internal combustion engine to be used to compress natural gas for storage on board the vehicle. Ordinarily, filling a compressed natural gas vehicle with natural gas would involve driving to a natural gas refueling station or buying an expensive stand-alone station for home use. OnBoard's design would allow natural gas compression to take place in a single cylinder of the engine itself, allowing the actual car to behave like a natural gas refueling station. Ultimately, the engine would then have the ability both to power the vehicle and to compress natural gas so it can be stored efficiently for future use. The design would cost approximately $400 and pay for itself with fuel savings in less than 6 months.

Program: 
Project Term: 
05/13/2019 to 05/12/2022
Project Status: 
ACTIVE
Project State: 
Oregon
Oregon State University (OSU)
Program: 
Project Term: 
07/15/2014 to 07/31/2016
Project Status: 
ALUMNI
Project State: 
Oregon

Oregon State University (OSU) will precisely measure the performance of three commercially-available home generators. The team will collect data on engine efficiency, endurance, emissions, and calculate a levelized cost of electricity (LCOE) for each generator. Published data on the performance of small generators is scarce, which has hampered efforts to identify where new technologies can be applied to improve the efficiency of small generators. The rigorous and repeatable measurements collected through this project will be an important step forward in developing future high-performance distributed power generation systems.

Oregon State University (OSU)
Program: 
Project Term: 
01/01/2014 to 08/31/2017
Project Status: 
ALUMNI
Project State: 
Oregon
Technical Categories: 
Oregon State University (OSU) will develop a small-scale bioreactor that can enable high-rate, low cost bioconversion of methane to liquid fuel. Current systems to convert methane using microorganisms can be slow and inefficient due to the low rate at which methane gas and nutrients are transferred to biocatalysts as well as the build-up of toxins that affect the health of biocatalysts. Using an ultra-thin, stacked "Bio-Lamina-Plate" system OSU will attempt to improve the overall rate at which methane is transferred to the biocatalysts. This new reactor design also helps to improve the rate at which oxygen is provided and products are removed from the system. The reactor design improves the amount of surface exposed relative to the volume of biofilm and provides better heat transfer to improve overall reactor efficiency. Unlike reactors build using stainless steel, OSU's reactor may use low-cost materials such as plastic and glass, as well as simple fabrication techniques to reduce the bioreactor manufacturing costs.
Oregon State University (OSU)
Program: 
Project Term: 
05/16/2016 to 07/31/2019
Project Status: 
ALUMNI
Project State: 
Oregon
Technical Categories: 

The team led by Oregon State University (OSU) is developing a novel gas-to-liquid (GTL) technology that utilizes a "corona discharge" plasma to convert methane to higher value chemicals, such as ethylene or liquid fuels. A corona discharge is formed when a high voltage is applied across a gap with a shaped electrode that concentrates the electric field at a tip. At sufficiently high voltage, an electrical discharge (characterized by a faint glow - a corona) is formed, and ionizes the surrounding gas molecules, i.e. split them into positive ions and free electrons. The team will build a reactor consisting of an array of micro-structured conducting surfaces to form corona discharges that ionize methane molecules and recombine the ionized components to form longer chain hydrocarbons with higher value. The key advantages of this technology are the innovative reactor design, which will allow small-scale production, as well as the high energy and conversion efficiencies, resulting in less energy being consumed to convert methane to liquid fuels.

Program: 
Project Term: 
10/01/2010 to 06/30/2012
Project Status: 
CANCELLED
Project State: 
Oregon
Technical Categories: 
ReVolt Technology is developing a rechargeable zinc-air battery that could offer 300-500% more storage capacity than today's Li-Ion batteries at half their cost. Zinc-air batteries could be much more inexpensive, lightweight, and energy dense than Li-Ion batteries because air--one of the battery's main reactants--does not need to be housed inside the battery. This frees up more space for storage. Zinc-air batteries have not been commercially viable for use in EVs because they typically cannot be recharged, complicating vehicle "refueling". ReVolt has designed a system whereby the battery's zinc-based negative electrode is suspended in liquid and passed through a tube that functions as the battery's positive electrode. This allows the device to charge and discharge just like a regular battery.