Sorry, you need to enable JavaScript to visit this website.

ARPA-E Projects

Search ARPA-E Projects by Keyword

Displaying 1 - 25 of 25
Advanced Cooling Technologies (ACT)
Program: 
Project Term: 
08/15/2015 to 12/31/2018
Project Status: 
ALUMNI
Project State: 
Pennsylvania
Technical Categories: 
Advanced Cooling Technologies (ACT) will work with Lehigh University, the University of Missouri, and Evapco, Inc. to design and build a novel cool storage system that will increase the efficiency of a plant's dry-cooling system. During the day, the system will transfer waste heat from the plant's heated condenser water via an array of heat pipes to a cool storage unit containing a phase-change material (PCM). The planned PCMs are salt hydrates that can be tailored to store and release large amounts of thermal energy, offering a way to store waste heat until it can be efficiently rejected. When temperatures are lower, such as at night, a novel system of self-agitated fins will be used to promote mixing and enhance heat transfer to air. The effectiveness of the fins will allow a reduction in the size of the storage media and the power required to operate it, both of which could lower costs for the system. Because the PCM materials are salts, their storage temperature can be tuned by changing the water content. Therefore, the storage system can potentially be customized to provide supplemental dry cooling for different climates, including regions with high ambient temperatures, such as the southwestern United States.
Program: 
Project Term: 
03/31/2014 to 07/20/2018
Project Status: 
ALUMNI
Project State: 
Pennsylvania
Technical Categories: 

Alcoa is designing a new, electrolytic cell that could significantly improve the efficiency and price point of aluminum production. Conventional cells reject a great deal of waste heat, have difficulty adjusting to electricity price changes, and emit significant levels of CO2. Alcoa is addressing these problems by improving electrode design and integrating a heat exchanger into the wall of the cell. Typically, the positive and negative electrodes--or anode and cathode, respectively--within a smelting cell are horizontal. Alcoa will angle their cathode, increasing the surface area of the cell and shortening the distance between anode and cathode. Further, the cathode will be protected by ceramic plates, which are highly conductive and durable. Together, these changes will increase the output from a particular cell and enable reduced energy usage. Alcoa's design also integrates a molten glass (or salt) heat exchanger to capture and reuse waste heat within the cell walls when needed and reduce global peak energy demand. Alcoa's new cell design could consume less energy, significantly reducing the CO2 emissions and costs associated with current primary aluminum production.

Carnegie Mellon University (CMU)
Program: 
Project Term: 
02/27/2012 to 03/28/2015
Project Status: 
ALUMNI
Project State: 
Pennsylvania
Technical Categories: 
Carnegie Mellon University (CMU) is developing a new nanoscale magnetic material that will reduce the size, weight, and cost of utility-scale PV solar power conversion systems that connect directly to the grid. Power converters are required to turn the energy that solar power systems create into useable energy for the grid. The power conversion systems made with CMU's nanoscale magnetic material have the potential to be 150 times lighter and significantly smaller than conventional power conversion systems that produce similar amounts of power.
Program: 
Project Term: 
02/06/2019 to 02/05/2022
Project Status: 
ACTIVE
Project State: 
Pennsylvania
Technical Categories: 
Carnegie Mellon will combine its expertise in additive manufacturing (AM) with Westinghouse's knowhow in nuclear reactor component fabrication to develop an innovative process for AM of nuclear components. The team chose to redesign nuclear reactor spacer grids as a test case because they are a particularly difficult component to manufacture. The role of spacer grids is to provide mechanical support to nuclear fuel rods within a reactor and reduce vibration as well as cause mixing of the cooling fluid. The team will alter the traditional AM process, including using nonstandard powders to optimize performance and reduce cost. If the project is successful, it could pave the way for other reactor components to be additively manufactured, enabling the rapid deployment of advanced reactors.
Program: 
Project Term: 
09/16/2019 to 12/15/2022
Project Status: 
ACTIVE
Project State: 
Pennsylvania
Technical Categories: 
Program: 
Project Term: 
07/15/2019 to 07/14/2021
Project Status: 
ACTIVE
Project State: 
Pennsylvania
Technical Categories: 

Drexel University is proposing a solid-state MV circuit breaker based on silicon carbide devices, a resonant topology, and capacitive wireless power transfer that aims to significantly improve breaker performance for the MVDC ecosystem. The project combines innovations in using an active resonant circuit to realize zero-current switching, wireless capacitive coupling between the conduction and breaker branches to avoid direct metal-to-metal contact for rapid response speed, and wireless powering to drive the MV switches for improved system reliability.

Electron Energy Corporation (EEC)
Program: 
Project Term: 
04/15/2013 to 02/14/2017
Project Status: 
ALUMNI
Project State: 
Pennsylvania
Technical Categories: 
Electron Energy Corporation (EEC) and its team are developing a new processing technology that could transform how permanent magnets found in today's EV motors and renewable power generators are fabricated. This new process, known as friction consolidation extrusion (FC&E), could produce stronger magnets at a lower cost and with reduced rare earth mineral content. The advantage of FC&E over today's best fabrication processes is that it can be applied to unconsolidated powders as opposed to solid alloys, which can allow magnets to be compacted from much smaller grains of two different types, a process which could double its magnetic energy density. EEC's process could reduce the need for rare earth mineral in permanent magnets by as much 30%.
Program: 
Project Term: 
01/01/2010 to 06/30/2012
Project Status: 
ALUMNI
Project State: 
Pennsylvania
Technical Categories: 

Two faculty members at Lehigh University created a new technique called supercapacitive swing adsorption (SSA) that uses electrical charges to encourage materials to capture and release CO2. Current CO2 capture methods include expensive processes that involve changes in temperature or pressure. Lehigh University's approach uses electric fields to improve the ability of inexpensive carbon sorbents to trap CO2. Because this process uses electric fields and not electric current, the overall energy consumption is projected to be much lower than conventional methods. Lehigh University is now optimizing the materials to maximize CO2 capture and minimize the energy needed for the process.

Pennsylvania State University (Penn State)
Program: 
Project Term: 
01/01/2013 to 03/31/2016
Project Status: 
ALUMNI
Project State: 
Pennsylvania
Technical Categories: 

Pennsylvania State University (Penn State) is developing an innovative, reconfigurable design for electric vehicle battery packs that can re-route power in real time between individual cells. Much like how most cars carry a spare tire in the event of a blowout, today's battery packs contain extra capacity to continue supplying power, managing current, and maintaining capacity as cells age and degrade. Some batteries carry more than 4 times the capacity needed to maintain operation, or the equivalent of mounting 16 tires on a vehicle in the event that one tire goes flat. This overdesign is expensive and inefficient. Penn State's design involves unique methods of electrical reconfigurability to enable the battery pack to switch out cells as they age and weaken. The system would also contain control hardware elements to monitor and manage power across cells, identify damaged cells, and signal the need to switch them out of the circuit.

Pennsylvania State University (Penn State)
Program: 
Project Term: 
07/01/2010 to 06/30/2014
Project Status: 
ALUMNI
Project State: 
Pennsylvania
Technical Categories: 
Pennsylvania State University (Penn State) is genetically engineering bacteria called Rhodobacter to use electricity or electrically generated hydrogen to convert carbon dioxide into liquid fuels. In collaboration with the University of Kentucky, Penn State is taking genes from oil-producing algae called Botryococcus braunii and putting them into Rhodobacter to produce hydrocarbon molecules, which closely resemble gasoline. Penn State is developing engineered tanks to support microbial fuel production and determining the most economical way to feed the electricity or hydrogen to the bacteria, including using renewable sources of power like solar energy.
Pennsylvania State University (Penn State)
Program: 
Project Term: 
09/01/2010 to 07/31/2014
Project Status: 
ALUMNI
Project State: 
Pennsylvania
Technical Categories: 
Pennsylvania State University (Penn State) is designing a freezer that substitutes the use of sound waves and environmentally benign refrigerant for synthetic refrigerants found in conventional freezers. Called a thermoacoustic chiller, the technology is based on the fact that the pressure oscillations in a sound wave result in temperature changes. Areas of higher pressure raise temperatures and areas of low pressure decrease temperatures. By carefully arranging a series of heat exchangers in a sound field, the chiller is able to isolate the hot and cold regions of the sound waves. Penn State's chiller uses helium gas to replace synthetic refrigerants. Because helium does not burn, explode or combine with other chemicals, it is an environmentally-friendly alternative to other polluting refrigerants. Penn State is working to apply this technology on a large scale.
Program: 
Project Term: 
02/10/2016 to 07/31/2020
Project Status: 
ACTIVE
Project State: 
Pennsylvania
Technical Categories: 

Pennsylvania State University (Penn State), along with their partner organizations, will develop a high efficiency micro-CPV system that features the same flat design of traditional solar panels, but with nearly twice the efficiency. The system is divided into three layers. The top and bottom layers use a refractive/reflective pair of tiny spherical lens arrays to focus sunlight onto a micro-CPV cell array in the center layer. The micro-CPV arrays will be printed on a transparent sheet that slides laterally between the top and bottom layer to ensure that the maximum amount of sunlight is delivered to the micro-PV cell throughout the day. Advanced manufacturing using high-throughput printing techniques will help reduce the cost of the micro-CPV cell arrays and allow the team to create five-junction micro-PV cells that can absorb a broader range of light and promote greater efficiency. By concentrating and focusing sunlight on a specific advanced micro-PV cell, the system can achieve much higher efficiency than standard FPV panels, while maintaining a similar flat panel architecture.

Pennsylvania State University (Penn State)
Program: 
Project Term: 
01/01/2017 to 12/31/2018
Project Status: 
ALUMNI
Project State: 
Pennsylvania
Technical Categories: 

Pennsylvania State University (Penn State) will develop a process for cold-sintering of ceramic ion conductors below 200°C to achieve a commercially viable process for integration into batteries. Compared to liquid electrolytes, ceramics and ceramic composites exhibit various advantages, such as lower flammability, and larger electrochemical and thermal stability. One challenge with traditional ceramics is the propagation of lithium dendrites, branchlike metal fibers that short-circuit battery cells. Penn State will create ceramic and ceramic/polymer composite electrolytes that resist dendrite growth by creating optimized microstructures via cold sintering. Sintering is the process of compacting and forming a solid mass by heat and/or pressure without melting it to the point of changing it to a liquid, similar to pressing a snowball together from loose snow. However, the high temperature required for traditional sintering of ceramics limits opportunities for integration in electrochemical systems and leads to high processing costs. Cold-sintering below 200°C changes the ability to control grain boundaries within ceramic materials, creates opportunities to tune interfaces, and opens the door for integration of different materials. It also allows large area co-processing of organic and inorganic materials in a one-step process, leading to savings in fabricating costs by eliminating the separate ceramic sintering steps and high-temperature processing.

Pennsylvania State University (Penn State)
Program: 
Project Term: 
03/28/2017 to 03/27/2020
Project Status: 
ACTIVE
Project State: 
Pennsylvania
Technical Categories: 

Pennsylvania State University (Penn State) will develop a predictive control system that will use vehicle connectivity to reduce fuel consumption for a heavy duty diesel vehicle by at least 20% without compromising emissions, drivability, mobility, or safety. The technology will work to achieve four individual and complementary goals that co-optimize vehicle dynamic and powertrain control. First, it will exploit connected communication to anticipate traffic/congestion patterns on different roads, traffic light timing, and the speed trajectories of surrounding vehicles. Second, the system will coordinate with surrounding vehicles to achieve platooning on the highway, coordinated departures/arrivals at intersections, and consistency in the speed trajectories both within vehicle platoons and among neighboring vehicles that are not in a platoon. Platooning will allow vehicles to collectively reduce their aerodynamic losses, thereby reducing their fuel consumption. Coordinating vehicle departures and arrivals at intersections will minimize energy loss due to braking, idling, and inefficient departures. As its third goal, the technology will optimize vehicle dynamic control decisions such as the choice of route, the trajectory of vehicle speed versus time in a given road segment, and the choice of whether the vehicle is in an acceleration, deceleration, or coasting state at different points in time. Optimal routing will reduce fuel consumption by avoiding the fuel penalties associated with congestion and/or hilly terrains as much as possible. Finally, the technology will also optimize powertrain control decisions to eliminate unnecessary engine idling. Software for each of the goals will constitute a standalone product that can be commercialized independently of the others, but together, they will operate in an integrated manner to achieve co-optimized and coordinated vehicle control. If successful, this will result in vehicles that operate in a predictive manner, taking into account all the available data and information to produce the best outcome for vehicle fuel consumption, drivability, mobility, emissions, and safety.

Pennsylvania State University (Penn State)
Program: 
Project Term: 
07/19/2017 to 07/18/2021
Project Status: 
ACTIVE
Project State: 
Pennsylvania
Technical Categories: 

Pennsylvania State University (Penn State) will develop DEEPER, a platform for identifying the traits of deeper-rooted crops that integrates breakthroughs in nondestructive field phenotyping of rooting depth, root modeling, high-throughput 3D imaging of root architecture and anatomy, gene discovery, and genomic selection modeling. The platform will be deployed to observe maize (corn) in the field under drought, nitrogen stress, and non-stressed conditions. Their key sensor innovation is to measure leaf elemental composition with x-ray fluorescence, and use it as a proxy for rooting depth. This above-ground, high throughput measurement for root depth will enable plant breeders to screen large populations and develop deep rooted commercial varieties. The team will also develop an automated imaging system for excavated roots that, with associated computer vision software, will identify architectural traits of roots. Lastly, they will greatly enhance a laser-based imaging platform to determine root anatomy. The combination of these technology platforms with advanced computational models developed for this program will allow Penn State to determine the depth of plant roots, enabling better quantification of root biomass. As a full system platform, they aim to enable the breeding of maize with deeper roots that sequester more carbon and are more efficient in their utilization of nitrogen and water. The team will also contribute data to a nationwide dataset that seeks to study the interactions between genes and the environment. The dataset will include extensive plant data across multiple environments, a breeding toolkit of major genes regulating root depth, and genomic selection models for root depth, drought tolerance, and nitrogen use efficiency.

Pennsylvania State University (Penn State)
Program: 
Project Term: 
12/14/2009 to 07/09/2010
Project Status: 
CANCELLED
Project State: 
Pennsylvania
Technical Categories: 

Pennsylvania State University (Penn State) is developing a novel sunlight to chemical fuel conversion system. This innovative technology is based on tuning the properties of nanotube arrays with co-catalysts to achieve efficient solar conversion of CO2 and water vapor to methane and other hydrocarbons. The goal of this project is to build a stand-alone collector which can achieve ~2% sunlight to chemical fuel conversion efficiency via CO2 reduction.

Pennsylvania State University (Penn State)
Program: 
Project Term: 
11/01/2013 to 12/31/2015
Project Status: 
ALUMNI
Project State: 
Pennsylvania
Technical Categories: 
Pennsylvania State University (Penn State) is using a new fabrication process to build load-bearing lithium-ion batteries that could be used as structural components of electric vehicles. Conventional batteries remain independent of a vehicle's structure and require heavy protective components that reduce the energy to weight ratio of a vehicle. PowerPanels combine the structural components with a functional battery for an overall reduction in weight. Penn State's PowerPanels use a "jelly roll" design that winds battery components together in a configuration that is strong and stiff enough to be used as a structural component. The result of this would be a low-profile battery usable as a panel on the floor of a vehicle.
Pennsylvania State University (Penn State)
Program: 
Project Term: 
07/31/2019 to 07/30/2022
Project Status: 
ACTIVE
Project State: 
Pennsylvania
Technical Categories: 
Pennsylvania State University (Penn State)
Program: 
Project Term: 
01/01/2014 to 06/30/2017
Project Status: 
ALUMNI
Project State: 
Pennsylvania
Technical Categories: 
Pennsylvania State University (Penn State) is engineering a type of bacteria known as Methanosarcina acetivorans to produce acetate from methane gas. Current approaches to methane conversion are energy-intensive and result in substantial waste of carbon dioxide. Penn State will engineer a pathway for converting methane to a chemical called acetate by reversing the natural pathway for acetate to methanol conversion. This new approach is advantageous because it consumes carbon dioxide, produces energy-rich carbon-carbon bonds, and conserves electrons to make the molecules produced reactive and easy to combine with other molecules. The acetate generated can be used to form polymers that can be further processed into liquid fuels.
Program: 
Project Term: 
05/15/2013 to 08/10/2015
Project Status: 
CANCELLED
Project State: 
Pennsylvania
Technical Categories: 
Silicon Power is developing a semiconducting device that switches high-power and high-voltage electricity using optical signals as triggers for the switches, instead of conventional signals carried through wires. A switch helps control electricity, converting it from one voltage or current to another. High-power systems generally require multiple switches to convert energy into electricity that can be transmitted through the grid. These multi-level switch configurations use many switches which may be costly and inefficient. Additionally, most switching mechanisms use silicon, which cannot handle the high switching frequencies or voltages that high-power systems demand. Silicon Power is using light to trigger its switching mechanisms, which could greatly simplify the overall power conversion process. Additionally, Silicon Power's switching device is made of silicon carbide instead of straight silicon, which is more efficient and allows it to handle higher frequencies and voltages.
Program: 
Project Term: 
09/28/2015 to 11/30/2019
Project Status: 
ACTIVE
Project State: 
Pennsylvania
Technical Categories: 
Swarthmore College, along with its partner Bryn Mawr College, will investigate a new kind of plasma fusion target that may offer improved stability at low cost and relatively low energy input. The research team will design and develop new modules that accelerate and evolve plasmas to create elongated structures known as Taylor states, which have helical magnetic field lines resembling a rope. These Taylor state structures exhibit interesting and potentially very beneficial properties upon compression, and could be used as a fusion target if they are able to maintain their temperatures and stability long enough to be compressed to fusion conditions. The new plasma-forming modules will be tested using the team's existing Swarthmore Spheromak Experiment device (SSX), which has an advanced diagnostic suite and the capability to perform 100 experiments per day. This ability will enable rapid progress in understanding the behavior of these plasma plumes and illuminate their potential for use as new targets in the pursuit of fusion reactors.
Program: 
Project Term: 
09/16/2019 to 09/15/2022
Project Status: 
ACTIVE
Project State: 
Pennsylvania
Technical Categories: 
Program: 
Project Term: 
01/13/2014 to 04/30/2016
Project Status: 
CANCELLED
Project State: 
Pennsylvania
Technical Categories: 
Titanium Metals Corporation (TIMET) is developing an electrochemical process for producing pure titanium powder. Incumbent titanium production processes require the importation of high-grade titanium ores. TIMET's groundbreaking design will enable the use of abundant, low-cost, domestic ore to produce titanium powder electrolytically. By totally revolutionizing the electrolysis process, TIMET can fully optimize the process more effectively using a unique approach. TIMET's electrochemical methods could produce higher quality titanium powder at lower cost and reduced energy consumption compared to the conventional Kroll process.
Program: 
Project Term: 
05/01/2013 to 04/30/2016
Project Status: 
ALUMNI
Project State: 
Pennsylvania
Technical Categories: 

The University of Pittsburgh (Pitt) is developing a compound to increase the viscosity of--or thicken--liquid carbon dioxide (CO2). This higher-viscosity CO2 compound could be used to improve the performance of enhanced oil recovery techniques. Crude oil is found deep below the surface of the earth in layers of sandstone and limestone, and one of the ways to increase our ability to recover it is to inject a high-pressure CO2 solvent into these layers. Unfortunately, because the solvent is less viscous--or thinner--than oil, it is not robust enough to uniformly sweep the oil out of the rock and toward the oil well. Pitt's CO2-thickeners would improve the performance of the solvents involved in this process, allowing it to carry higher concentrations of oil to the surface. The thickeners would decrease the cost and increase the efficiency of enhanced oil recovery, and could also serve to enable liquid CO2 as a replacement for the water used during recovery, offering significant environmental benefits.

Program: 
Project Term: 
08/24/2018 to 02/28/2021
Project Status: 
ACTIVE
Project State: 
Pennsylvania
Technical Categories: 

Westinghouse Electric Company will develop a self-regulating "solid core block" (SCB) that employs solid material (instead of bulk liquid flow or moving parts) to passively regulate the reaction rate in a micro-scale nuclear reactor. The project aims for the reactor to achieve safe shutdown without the need for additional controls, external power sources, or operator intervention, enabling highly autonomous operation. The SCB is key to the reactor design, which is comprised of a core (containing fuel, moderator, and axial reflectors) and primary and decay heat exchangers, all connected end to end by horizontal heat pipes. During off-normal conditions, the reactor will shut itself down and promptly dissipate the decay heat for an indefinite amount of time without any operator intervention or using any control systems, improving safety. The team will conduct modeling and simulations to predict the SCB's inherent self-regulating ability. It will then fabricate and test several SCB samples to validate the modeling and simulation tools and confirm feasibility of advanced manufacturing techniques. The SCB will be the central component of the team's complete micro reactor concept, a robust product that aims to overcome many common challenges of current nuclear power plants, including complicated plant designs, uncertain construction times, high operating and financing costs, and load following limitations.