Sorry, you need to enable JavaScript to visit this website.

ARPA-E Projects

Search ARPA-E Projects by Keyword

Displaying 1 - 5 of 5
Baldor Electric Company
Program: 
Project Term: 
01/31/2012 to 02/15/2015
Project Status: 
ALUMNI
Project State: 
South Carolina
Technical Categories: 
Baldor Electric Company is developing a new type of traction motor with the potential to efficiently power future generations of EVs. Unlike today's large, bulky EV motors which use expensive, imported rare-earth-based magnets, Baldor's motor could be light, compact, contain no rare earth materials, and have the potential to deliver more torque at a substantially lower cost. Key innovations in this project include the use of a unique motor design, incorporation of an improved cooling system, and the development of advanced materials manufacturing techniques. These innovations could significantly reduce the cost of an electric motor.
Program: 
Project Term: 
09/30/2015 to 05/28/2019
Project Status: 
ALUMNI
Project State: 
South Carolina
Technical Categories: 

Clemson University is partnering with Carnegie Mellon University (CMU), the Donald Danforth Plant Science Center, and Near Earth Autonomy to develop and operate an advanced plant phenotyping system, incorporating modeling and rapid prediction of plant performance to drive improved yield and compositional gains for energy sorghum. The team will plant and phenotype one of the largest sets of plant types in the TERRA program. Researchers will design and build two phenotyping platforms - an aerial sensor platform and a ground-based platform. The aerial platform, developed by Near Earth Autonomy, is a fast moving, autonomous helicopter outfitted with sensors that will collect image data from above. The ground platforms are customized robots from CMU that will drive between crop rows below the plant canopy and collect data using two distinct sensor suites. The first will use sophisticated cameras and imaging algorithms to develop detailed 3D models of individual plants and their canopy structure. The second will have the unique ability to directly contact the plant in order to systematically measure physical characteristics that were previously measured manually with labor-intensive, low-throughput methods. The team will use machine learning techniques to analyze the data gathered from the phenotyping systems and translate this into predictive algorithms for accelerated breeding of improved biofuel plants.

Medical University of South Carolina (MUSC)
Program: 
Project Term: 
07/09/2010 to 02/15/2015
Project Status: 
ALUMNI
Project State: 
South Carolina
Technical Categories: 

Medical University of South Carolina (MUSC) is developing an engineered system to create liquid fuels from communities of interdependent microorganisms. MUSC is first pumping carbon dioxide (CO2) and renewable sources of electricity into a battery-like cell. A community of microorganisms uses the electricity to convert the CO2 into hydrogen. That hydrogen is then consumed by another community of microorganisms living in the same system. These new microorganisms convert the hydrogen into acetate, which in turn feed yet another community of microorganisms. This last community of microorganisms uses the acetate to produce a liquid biofuel called butanol. Similar interdependent microbial communities can be found in some natural environments, but they've never been coupled together in an engineered cell to produce liquid fuels. MUSC is working to triple the amount of butanol that can be produced in its system and to reduce the overall cost of the process.

Program: 
Project Term: 
03/31/2017 to 06/30/2018
Project Status: 
ALUMNI
Project State: 
South Carolina
Technical Categories: 

Tetramer Technologies will develop an anion exchange membrane (AEM) as an alternative to proton exchange membranes (PEM) for use in fuel cells and electrolyzers. The team will test a newly developed AEM for stability in alkaline conditions at a temperature of 80°C, enhanced ion conductivity, controlled membrane swelling, and other required properties. Industry has not yet achieved a cost-effective, commercially viable AEM with long-term chemical and physical stability. If such AEMs could be developed, then AEM-fuel cells could use inexpensive, non-precious metal catalysts, as opposed to expensive metal catalysts like platinum. Platinum in PEM fuel cells accounts for close to 50% of the total fuel cell stack cost at high volume, while the acid-resistant bipolar plates account for an additional 22% of the total stack cost. In alkaline conditions, switching precious metals for cheaper metal catalysts could reduce stack costs by an estimated 50%, which would result in a 25% lower overall vehicle fuel cell system cost. If successful, the team's polymers could produce a pathway toward dramatically cheaper fuel cells that exhibit comparable or better performance to today's fuel cells.

Program: 
Project Term: 
10/01/2014 to 09/30/2017
Project Status: 
ALUMNI
Project State: 
South Carolina
Technical Categories: 
The University of South Carolina is developing an intermediate-temperature, ceramic-based fuel cell that will both generate and store electrical power with high efficiencies. Reducing operating temperatures for fuel cells is critical to enabling distributed power generation. The device will incorporate a newly discovered ceramic electrolyte and nanostructured electrodes that enable it to operate at temperatures lower than 500ºC, far below the temperatures associated with fuel cells for grid-scale power generation. The fuel cell's unique design includes an iron-based layer that stores electrical charge like a battery, enabling a faster response to changes in power demand.