ARPA-E Projects
Search ARPA-E Projects by Keyword
Gayle Technologies is developing a laser-guided, ultrasonic electric vehicle battery inspection system that would help gather precise diagnostic data on battery performance. The batteries used in hybrid vehicles are highly complex, requiring advanced management systems to maximize their performance. Gayle's laser-guided, ultrasonic system would allow for diagnosis of various aspects of the battery system, including inspection for defects during manufacturing and assembly, battery state-of-health, and flaws that develop from mechanical or chemical issues with the battery system during use. Because of its non-invasive nature, relatively low cost, and potential for yielding broad information content, this innovative technology could increase productivity in battery manufacturing and better monitor battery conditions during use or service.
The team led by Oak Ridge National Laboratory (ORNL) will design proton-selective membranes for use in storage technologies, such as flow batteries, fuel cells, or electrolyzers for liquid-fuel storage. Current proton-selective membranes (e.g. Nafion) require hydration, but the proposed materials would be the first low-temperature membranes that conduct protons without the need for hydration. The enabling technology relies on making single-layer membranes from graphene or similar materials and supporting them for mechanical stability. The team estimates that these membranes can be manufactured at costs around one order of magnitude lower than Nafion membranes. Due to the lower system complexity, the team's innovations would enable fuel cell production at lower system-level costs.
Oak Ridge National Laboratory (ORNL) will develop glassy Li-ion conductors that are electrochemically and mechanically stable against lithium metal and can be integrated into full battery cells. Metallic lithium anodes could significantly improve the energy density of batteries versus today's state-of-the-art lithium ion cells. ORNL has chosen glass as a solid barrier because the lack of grain boundaries in glass mitigates the growth of branchlike metal fibers called dendrites, which short-circuit battery cells. The team aims to identify a glassy electrolyte with high conductivity, explore novel and cost-effective ways to fabricate this thin glass electrolyte, and design electrolyte membranes that are sufficiently robust to prevent cracking and degradation during battery fabrication and cycling. Advanced glass processing using rapid quench methods will enable a range of compositions and microstructures as well as their cost-effective fabrication as thin, dense membranes. In addition to glass composition, a range of membrane designs will be investigated by modeling and experiment. For efficient battery fabrication, the glassy membrane will likely require mechanical support and protection, which could be achieved by employing polymers or ceramic layers as a support.
Oak Ridge National Laboratory (ORNL) and its partners are creating a highly transparent, multilayer window film that can be applied onto single-pane windows to improve thermal insulation, soundproofing, and condensation resistance. The ORNL film combines four layers. Low-cost, nanoporous silica will be used to improve thermal insulation. A layer of a sound-absorbing polymer, which is commonly applied to windows for soundproofing, will be added between the silica sheets to reduce outside noise infiltration. A final outside superhydrophobic coating layer will minimize the condensation. A low-emissivity film will be added to minimize heat transfer out from the conditioned interior.
Oak Ridge National Laboratory (ORNL) is redesigning a fuel cell electrode that operates at 250ºC. Today's solid acid fuel cells (SAFCs) contain relatively inefficient cathodes, which require expensive platinum catalysts for the chemical reactions to take place. ORNL's fuel cell will contain highly porous carbon nanostructures that increase the amount of surface area of the cell's electrolyte, and substantially reduce the amount of catalyst required by the cell. By using nanostructured electrodes, ORNL can increase the performance of SAFC cathodes at a fraction of the cost of existing technologies. The ORNL team will also modify existing fuel processors to operate efficiently at reduced temperatures; those processors will work in conjunction with the fuel cell to lower costs at the system level. ORNL's innovations will enable efficient distributed electricity generation from domestic fuel sources using less expensive catalysts.
Oak Ridge National Laboratory (ORNL) is developing an abuse-tolerant EV battery. Abuse tolerance is a key factor for EV batteries. Robust batteries allow for a broader range of battery chemistries, including low-cost chemistries that could improve driving range and enable cost parity with gas-powered vehicles. ORNL's design would improve battery abuse tolerance at the cell level, thereby reducing the need for heavy protective battery housing. This will enable an EV system that would be lighter and more efficient, both reducing weight and cost and allowing the vehicle to drive further on each charge. ORNL will be researching a new architecture within each cell that will reduce the likelihood of a thermal damage in the event of an abuse situation. The new architecture incorporates a novel foil concept into the battery current collectors. In event of impact, crushing or penetration of the battery, the novel current collector will limit the connectivity and/or conductivity of the battery electrode assembly and hence limit the current at the site of an internal or external short. Limiting the current will avoid the local heating that can trigger thermal excitation and battery damage.
Oak Ridge National Laboratory (ORNL) is developing an electrolyte for use in EV batteries that changes from liquid to solid during collisions, eliminating the need for many of the safety components found in today's batteries. Today's batteries contain a flammable electrolyte and an expensive polymer separator to prevent electrical shorts--in an accident, the separator must prevent the battery positive and negative ends of the battery from touching each other and causing fires or other safety problems. ORNL's new electrolyte would undergo a phase change--from liquid to solid--in the event of an external force such as a collision. This phase change would produce a solid impenetrable barrier that prevents electrical shorts, eliminating the need for a separator. This would improve the safety and reduce the weight of the vehicle battery system, ultimately resulting in increased driving range.
Oak Ridge National Laboratory (ORNL) is developing an innovative battery design to more effectively regulate destructive isolated hot-spots that develop within a battery during use and eventually lead to degradation of the cells. Today's batteries are not fully equipped to monitor and regulate internal temperatures, which can negatively impact battery performance, life-time, and safety. ORNL's design would integrate efficient temperature control at each layer inside lithium ion (Li-Ion) battery cells. In addition to monitoring temperatures, the design would provide active cooling and temperature control deep within the cell, which would represent a dramatic improvement over today's systems, which tend to cool only the surface of the cells. The elimination of cell surface cooling and achievement of internal temperature regulation would have significant impact on battery performance, life-time, and safety.
The team from Oak Ridge National Laboratory (ORNL) and Georgia Institute of Technology is developing a new technology that will act like a sponge, integrating a new, alcohol-based ionic liquid into hollow fibers to capture CO2 from the exhaust produced by coal-fired power plants. Ionic liquids--salts that exist in liquid form--are promising materials for carbon capture and storage, but their tendency to thicken when combined with CO2 limits their efficiency and poses a challenge for their development as a cost-effective alternative to current-generation solutions. Adding alcohol to the mix limits this tendency to thicken in the presence of CO2 but can also make the liquid more likely to evaporate, which would add significantly to the cost of CO2 capture. To solve this problem, ORNL is developing new classes of ionic liquids with high capacity for absorbing CO2. ORNL's sponge would reduce the cost associated with the energy that would need to be diverted from power plants to capture CO2 and release it for storage.
Oak Ridge National Laboratory (ORNL) is developing an electromagnet-based, amplifier-like device that will allow for complete control over the flow of power within the electric grid. To date, complete control of power flow within the grid has been prohibitively expensive. ORNL's controller could provide a reliable, cost-effective solution to this problem. The team is combining two types of pre-existing technologies to assist in flow control, culminating in a prototype iron-based magnetic amplifier. Ordinarily, such a device would require expensive superconductive wire, but the magnetic iron core of ORNL's device could serve as a low-cost alternative that is equally adept at regulating power flow.
The team led by Oak Ridge National Laboratory (ORNL) will develop new cast alumina-forming austenitic alloys (AFAs), along with associated casting and welding processes for component fabrication. ORNL and its partners will prototype industrial components with at least twice the oxidation resistance compared to current cast chromia-forming steel and test it in an industrial environment. These innovations could allow various industrial and chemical processing systems and gas turbines to operate at higher temperatures to improve efficiencies and reduce downtimes, thus providing cost and energy reductions for a wide range of energy-intensive applications.
The University of Tennessee (UT) will develop a reversible Oxygen Reduction Reaction (ORR) catalyst that can be used both as a peroxide-producing electrolyzer and in reversible air batteries. The ORR catalyst development seeks to significantly improve peroxide electrolysis efficiency and achieve high charge and discharge rates in air-breathing batteries. In conjunction with the new catalyst, an anion exchange membrane (AEM) will be used to further increase the electrolyzer efficiency and reduce peroxide production costs. In the reversible air battery, the AEM increases battery power performance. Finally, a two-phase flow field design will increase both the current density and current efficiency for peroxide production and can also be used in the reversible air battery to build up a high concentration of hydrogen peroxide for energy storage. This technology could also enable onsite hydrogen peroxide production at small scale.
The University of Tennessee (UT) team proposes to develop a tool that will revolutionize plant metabolic engineering by using a large scale DNA synthesis strategy. The UT team will develop synthetic chloroplast (the part of the plant cell where photosynthesis occurs) genomes, called "synplastomes." Rather than introducing or editing genes individually inside the plant cell, the UT team will synthesize a complete chloroplast genome in the laboratory that can be readily modified and then introduced into the plant. UT's synplastomes will have significant advantages over conventional biotechnology methods. UT's synplastomes are expected to result in an extremely high expression of desired genes and will lack transgene positional effects, meaning improved consistency of trait expression. To ensure broader adoption and utilization of this technology, an editable synplastome will be generated that will feature standard genome editing sites and will allow for modification by researchers using standard, cost-effective techniques. The UT team's work in synthetic biology could significantly advance the field of plant metabolic engineering and help produce a path toward more economical, sustainable bio-based products.
University of Tennessee (UT), along with their partners, will develop a new type of microgrid design, along with its corresponding controller. Like most other microgrids, it will have solar PV-based distributed generation and be capable of grid-connected or disconnected (islanded) operations. Unlike other microgrids, this design will incorporate smart grid capabilities including intelligent switches and high-speed communication links. The included controller will accommodate and utilize these smart grid features for enhanced performance and reduced costs. The microgrid controller will be open source, offering a flexible and robust development and implementation environment. The microgrid and controller design will also be scalable for different geographic areas, load sizes, distributed generation source number and types, and even multiple microgrids within an area.
Yellowstone Energy will develop a new passive control technology to enhance safety and reduce nuclear power plant costs. The team's Reactivity Control Device (RCD) will integrate with the Yellowstone Energy Molten Nitrate Salt Reactor and other advanced reactor designs. The RCD will use fluid embedded in the reactor's control rods to control reaction rates at elevated temperatures, even in the absence of external controls. As the heating from fission increases or decreases, the fluid density will automatically and passively respond to control the system. The RCD's passive control is highly beneficial for ensuring reactor safety and stability under normal operation and accident scenarios. The team will use simulation tools to determine the effectiveness of the control device and conduct a techno-economic analysis at the plant level to determine cost effectiveness. If successful, the system will provide a high level of resiliency and reliability while significantly improving the economics and safety of many advanced reactor designs. The RCD may also serve as the basis for additional innovations in reactor designs including a broader range of coolant salts in solid fueled, salt-cooled reactors and further advanced reactor defense against cybersecurity threats.