Sorry, you need to enable JavaScript to visit this website.

ARPA-E Projects

Search ARPA-E Projects by Keyword

Displaying 1 - 31 of 31
Det Norske Veritas (DNV GL)
Program: 
Project Term: 
04/27/2015 to 10/30/2019
Project Status: 
ACTIVE
Project State: 
Texas
Technical Categories: 
Det Norske Veritas (DNV GL) and Group NIRE will provide a unique combination of third-party testing facilities, testing and analysis methodologies, and expert oversight to the evaluation of ARPA-E-funded energy storage systems. The project will leverage DNV GL's deep expertise in economic analysis of energy storage technologies, and will implement economically optimized duty cycles into the testing and validation protocol. DNV GL plans to test ARPA-E storage technologies at its state-of-the-art battery testing facility in partnership with the New York Battery and Energy Storage Technology Consortium. Those batteries that pass the rigorous evaluation process will be adapted for testing under real world conditions on Group NIRE's multi-megawatt, wind-integrated microgrid in Texas. Testing will show how well the ARPA-E storage technologies can serve critical applications and will assist ARPA-E-funded battery developers in identifying any issues with performance and durability. This testing will also deliver performance data that buyers of grid storage need, enabling informed choices about commercial adoption of grid storage technologies.
Det Norske Veritas (DNV KEMA)
Program: 
Project Term: 
10/01/2012 to 04/01/2015
Project Status: 
ALUMNI
Project State: 
Texas
Technical Categories: 
Det Norske Veritas (DNV KEMA) is testing a new gas monitoring system developed by NexTech Materials to provide early warning signals that a battery is operating under stressful conditions and at risk of premature failure. As batteries degrade, they emit low level quantities of gas that can be measured over the course of a battery's life-time. DNV KEMA is working with NexTech to develop technology to accurately measure these gas emissions. By taking accurate stock of gas emissions within the battery pack, the monitoring method could help battery management systems predict when a battery is likely to fail. Advanced prediction models could work alongside more traditional models to optimize the performance of electrical energy storage systems going forward. In the final phase of the project, DNV KEMA will build a demonstration in a community energy storage system with Beckett Energy Systems.
Program: 
Project Term: 
05/01/2013 to 02/17/2014
Project Status: 
ALUMNI
Project State: 
Texas
Technical Categories: 
eNova is developing a gas compressor powered by waste heat from the exhaust of a gas turbine. A conventional gas turbine facility releases the exhaust heat produced during operation into the air--this heat is a waste by-product that can be used to improve power generation system efficiency. eNova's gas compressor converts the exhaust waste heat from the simple cycle gas turbine to compressed air for injection into the turbine, thereby lessening the burden on the turbine's air compressor. This new compressor design is ideal for use with a remote gas turbine--such as that typically used in the natural gas industry to compress pipeline natural gas--with limited options for waste heat recovery and access to high voltage power lines and water.
Program: 
Project Term: 
01/30/2012 to 05/29/2015
Project Status: 
ALUMNI
Project State: 
Texas
Technical Categories: 

PV inverters convert DC power generated by modules into usable AC power. Ideal Power's initial 30kW 94lb PV inverter reduces the weight of comparable 30kW PV inverters by 90%--reducing the cost of materials, manufacturing, shipping, and installation. With ARPA-E support, new bi-directional silicon power switches will be developed, commercialized, and utilized in Ideal Power's next-generation PV inverter. With these components, Ideal Power will produce 100kW inverters that weight less than 100lb., reducing the weight of conventional 3,000lb. 100kW inverters by more than 95%. The new power switches will cut IPC's $/W manufacturing cost in half, as well as further reduce indirect shipping and installation costs.

Program: 
Project Term: 
01/01/2014 to 09/30/2017
Project Status: 
ALUMNI
Project State: 
Texas
Technical Categories: 
Monolith Semiconductor will utilize advanced device designs and existing low-cost, high-volume manufacturing processes to create high-performance silicon carbide (SiC) devices for power conversion. SiC devices provide much better performance and efficiency than their silicon counterparts, which are used in the majority of today's semiconductors. However, SiC devices cost significantly more. Monolith will develop a high-volume SiC production process that utilizes existing silicon manufacturing facilities to help drive down the cost of SiC devices.
Program: 
Project Term: 
04/16/2015 to 08/15/2018
Project Status: 
ALUMNI
Project State: 
Texas
Technical Categories: 

Rebellion Photonics plans to develop portable methane gas cloud imagers that can wirelessly transmit real-time data to a cloud-based computing service. This would allow data on the concentration, leak rate, location, and total emissions of methane to be streamed to a mobile device, like an iPad, smartphone, or Google Glass. The infrared imaging spectrometers will leverage snapshot spectral imaging technology to provide multiple bands of spectral information for each pixel in the image. Similar to a Go Pro camera, the miniature, lightweight camera is planned to be attached to a worker's hardhat or clothing, allowing for widespread deployment. By providing a real-time image of the plume to a mobile device, the technology's goal is to provide increased awareness of leaks for faster leak repair. This system could enable significant reduction in the cost associated with identifying, quantifying, and locating methane leaks as compared to currently available technologies.

Program: 
Project Term: 
09/15/2016 to 12/14/2017
Project Status: 
ALUMNI
Project State: 
Texas
Technical Categories: 

Rice University will develop a first of its kind biocatalyst to synthesize ammonia from small-scale isolated methane sources. The microorganisms will be engineered to maximize simultaneous diazotrophic and methanotrophic capabilities. Diazotrophs are organisms that can fix nitrogen gas in the air into a biologically usable form, such as ammonia. Methanotrophs are organisms that metabolize and use methane as an energy and carbon source. Rice University's technology will combine these capabilities, and develop a one-step ammonia synthesis that will operate at low temperature and pressure. These process characteristics will significantly reduce the technical complexities relative to HB synthesis and in turn enable small-scale deployment. Methane can be harvested from natural gas production sites, landfills, and biogas facilities. Bioreforming of this methane will produce CO2 and energy. The diazotrophic nature of the microorganisms will use the nitrogen, combined with energy derived from methane, to produce ammonia. Methane and air will be the only sources of energy, carbon and nitrogen, respectively. If successful, this highly mobile, low-cost ammonia synthesis process will turn previously wasted methane resources into a valuable product, while also significantly reducing U.S. GHG emissions.

Program: 
Project Term: 
09/01/2010 to 06/30/2015
Project Status: 
ALUMNI
Project State: 
Texas
Technical Categories: 
Sheetak is developing a thermoelectric-based solid state cooling system that is more efficient, more reliable, and more affordable than today's best systems. Many air conditioners are based on vapor compression, in which a liquid refrigerant circulates within the air conditioner, absorbs heat, and then pumps it out into the external environment. Sheetak's system, by contrast, relies on an electrical current passing through the junction of two different conducting materials to change temperature. Sheetak's design uses proprietary thermoelectric materials to achieve significant energy efficiency and, unlike vapor compression systems, contains no noisy moving parts or polluting refrigerants. Additionally, Sheetak's air conditioner would be made with some of the same manufacturing processes used to produce semiconductor chips, which could lead to less material use and facilitate more affordable production.
Program: 
Project Term: 
11/15/2011 to 03/31/2015
Project Status: 
ALUMNI
Project State: 
Texas
Technical Categories: 
Sheetak is developing a new HVAC system to store the energy required for heating and cooling in EVs. This system will replace the traditional refrigerant-based vapor compressors and inefficient heaters used in today's EVs with efficient, light, and rechargeable hot-and-cold thermal batteries. The high energy density thermal battery--which does not use any hazardous substances--can be recharged by an integrated solid-state thermoelectric energy converter while the vehicle is parked and its electrical battery is being charged. Sheetak's converters can also run on the electric battery if needed and provide the required cooling and heating to the passengers--eliminating the space constraint and reducing the weight of EVs that use more traditional compressors and heaters.
Program: 
Project Term: 
02/23/2012 to 06/22/2015
Project Status: 
ALUMNI
Project State: 
Texas
Technical Categories: 

SolarBridge Technologies is developing a new power conversion technique to improve the energy output of PV power plants. This new technique is specifically aimed at large plants where many solar panels are connected together. SolarBridge is correcting for the inefficiencies that occur when two solar panels that encounter different amounts of sun are connected together. In most conventional PV system, the weakest panel limits the energy production of the entire system. That's because all of the energy collected by the PV system feeds into a single collection point where a central inverter then converts it into useable energy for the grid. SolarBridge has found a more efficient and cost-effective way to convert solar energy, correcting these power differences before they reach the grid.

Southwest Research Institute (SwRI)
Program: 
Project Term: 
06/30/2017 to 06/29/2020
Project Status: 
ACTIVE
Project State: 
Texas
Technical Categories: 

Southwest Research Institute (SwRI) will develop control strategies and technology to improve the energy efficiency of a 2017 Toyota Prius Prime plug-in hybrid electric vehicle through energy-conscious path planning and powertrain control. The team will modify the vehicle to take advantage of connected, autonomous vehicle information streams and develop systems that co-optimize the control of vehicle speed and engine power to minimize energy consumption, maintain safety, and deliver expected performance. Modern automobiles are designed to provide the maximum possible performance to the driver in terms of response time and acceleration. Because of this, manufacturers design engines for all possible scenarios a driver may encounter - often conflicting with efficiency needs. The SwRI team will approach this problem by augmenting the vehicle with the necessary hardware for V2V and V2I connectivity along-with leveraging the production Dynamic Radar Cruise Control (DRCC) feature of the vehicle. GPS will work with cellular data to optimize planned driving routes. Eco-approach and departure will work with traffic signals at intersections to optimize vehicle braking and acceleration for improving energy efficiency. Plug-in hybrid electric vehicles are capable of charge-depleting, and charge-sustaining modes, or combination of these two modes depending on how much the vehicle uses the electric battery or the internal combustion engine. The team will develop control algorithms that will use the new information streams to optimize the battery state of charge for both overall trip efficiency and for driving power. Vehicle testing will occur in two phases. First, it will provide the driver with information about the next plug-in opportunity and suggested route and speed profiles. Next, the project will take advantage of DRCC to fully automate longitudinal control including regulating speed and ensuring safe operation by maintaining adequate spacing between vehicles.

Southwest Research Institute (SwRI)
Program: 
Project Term: 
10/01/2012 to 02/15/2015
Project Status: 
ALUMNI
Project State: 
Texas
Technical Categories: 
Southwest Research Institute (SwRI) is developing a battery management system to track the performance characteristics of lithium-ion batteries during charge and discharge cycles to help analyze battery capacity and health. No two battery cells are alike--they differ over their life-times in terms of charge and discharge rates, capacity, and temperature characteristics, among other things. In SwRI's design, a number of strain gauges would be strategically placed on the cells to monitor their state of charges and overall health during operation. This could help reduce the risk of batteries being over-charged and over-discharged. This novel sensing technique should allow the battery to operate within safe limits and prolong its cycle life. SwRI is working to develop complex algorithms and advanced circuitry to help demonstrate the potential of these sensing technologies at the battery-pack level.
Southwest Research Institute (SwRI)
Program: 
Project Term: 
03/20/2019 to 06/19/2021
Project Status: 
ACTIVE
Project State: 
Texas
Program: 
Project Term: 
02/11/2019 to 05/10/2020
Project Status: 
ACTIVE
Project State: 
Texas
Program: 
Project Term: 
06/30/2017 to 06/29/2020
Project Status: 
ACTIVE
Project State: 
Texas
Technical Categories: 

Texas A&M AgriLife Research will develop low field magnetic resonance imaging (LF-MRI) instrumentation that can image intact soil-root systems. The system will measure root biomass, architecture, 3D mass distribution, and growth rate, and could be used for selection of ideal plant characteristics based on these root metrics. It will also have the ability to three-dimensionally image soil water content, a key property that drives root growth and exploration. Operating much like a MRI used in a medical setting, the system can function in the field without damaging plants, unlike traditional methods such as trenching, soil coring, and root excavation. The team will test two different approaches: an in-ground system shaped like a cylinder that can be inserted into the soil to surround the roots; and a coil device that can be deployed on the soil surface around the plant stem. If successful, these systems can help scientists better understand the root-water-soil interactions that drive processes such as nutrient uptake by crops, water use, and carbon management. This new information is crucial for the development of plants optimized for carbon sequestration without sacrificing economic yield. The project also aims to help develop ideal energy sorghum possessing high root growth rates, roots with more vertical angles, and roots that are more drought resistant and proliferate under water limiting conditions.

Texas A&M Agrilife Research
Program: 
Project Term: 
02/15/2012 to 03/06/2017
Project Status: 
ALUMNI
Project State: 
Texas
Technical Categories: 
Texas A&M Agrilife Research is addressing one of the major inefficiencies in photosynthesis, the process by which plants convert sunlight into energy. Texas A&M Agrilife Research is targeting the most wasteful step in photosynthesis by redirecting a waste byproduct into a new pathway that will create terpenes--energy-dense fuel molecules that can be converted into jet or diesel fuel. This strategy will be first applied to tobacco to demonstrate more efficient terpene production in the leaf. If successful in tobacco, the approach will be translated into the high biomass plant Arundo donax (giant cane) for fuel production.
Texas A&M Agrilife Research
Program: 
Project Term: 
04/13/2016 to 08/31/2019
Project Status: 
ACTIVE
Project State: 
Texas
Technical Categories: 

Texas A&M AgriLife Research will develop ground penetrating radar (GPR) antenna arrays for 3D root and soil organic carbon imaging and quantification. Visualization of root systems with one mm resolution in soils could enable breeders to select climate-resilient bioenergy crops that provide higher yields, require fewer inputs, improve soil health, and promote carbon sequestration. Texas A&M will create a GPR system that will collect real-time measurements using a deployable robotic platform. The GPR system will collect data comparing annual energy sorghum to perennial species, which have great potential to deposit and store carbon in the soil. Texas A&M's primary focus is to complement the selection of high biomass feedstock crops by providing valuable data about the root architecture. This data could improve understanding of the soil ecosystem and ultimately allow for improved bioenergy crop productivity.

Program: 
Project Term: 
09/17/2012 to 12/31/2014
Project Status: 
ALUMNI
Project State: 
Texas
Technical Categories: 
Texas A&M University is developing a highly adsorbent material for use in on-board natural gas storage tanks that could drastically increase the volumetric energy density of methane, which makes up 95% of natural gas. Today's best tanks do not optimize their natural gas storage capacity and add too much to the sticker price of natural gas vehicles to make them viable options for most consumers. Texas A&M University will synthesize low-cost materials that adsorb high volumes of natural gas and increase the storage capacity of the tanks. This design could result in a natural gas storage tank that maximizes its ability to store methane and can be manufactured at low cost, side-stepping two major obstacles associated with the use of natural gas vehicles.
Program: 
Project Term: 
08/27/2018 to 08/26/2021
Project Status: 
ACTIVE
Project State: 
Texas
Technical Categories: 

Texas A&M University will develop an advanced, low-cost occupancy detection solution for residential homes. Their system, called SLEEPIR, is based on pyroelectric infrared sensors (PIR) a popular choice for occupancy detection and activity tracking due to their low cost, low energy consumption, large detection range, and wide field of view. However, traditional PIR sensors can only detect individuals in motion. The team proposes a next-generation PIR sensor that is able to detect non-moving heat sources and provide quantitative information on movement. Their innovation relies on the use of an "optical chopper" which temporarily interrupts the flow of heat to the sensor and allows the device to detect both stationary and moving individuals. The team will evaluate several approaches for the chopper, such as new low-power liquid crystal technology with no moving parts. They will apply new signal processing techniques and machine learning to the infrared data, enabling differentiation between pets and people and potentially sleep vs. active states. A central hub accepts wireless data from the sensors and overrides the home thermostat as needed to adjust temperatures and provide up to 30% energy savings to the home.

Program: 
Project Term: 
07/01/2010 to 09/30/2012
Project Status: 
ALUMNI
Project State: 
Texas
Technical Categories: 
A team led by three professors at Texas A&M University is developing a subset of metal organic frameworks that respond to stimuli such as small changes in temperature to trap CO2 and then release it for storage. These frameworks are a promising class of materials for carbon capture applications because their structure and chemistry can be controlled with great precision. Because the changes in temperature required to trap and release CO2 in Texas A&M's frameworks are much smaller than in other carbon capture approaches, the amount of energy or stimulus that has to be diverted from coal-fired power plants to accomplish this is greatly reduced. The team is working to alter the materials so they bind only with CO2, and are stable enough to withstand the high temperatures found in the chimneys of coal-fired power plants.
Program: 
Project Term: 
10/01/2015 to 10/31/2018
Project Status: 
ALUMNI
Project State: 
Texas
Technical Categories: 
Texas A&M University, along with Carnegie Melon University (CMU), will develop a rugged robotic system to measure characteristics of sorghum in the field. Traditionally this type of data collection is performed manually and often can only be collected when the crop is harvested. The team from CMU will create an automated gantry system with a plunging sensor arm to characterize individual plants in the field. The sensor arm of the gantry system allows the team to collect data not only from above, but to descend into the canopy and take measurements within. The team will utilize machine learning algorithms to interpret the field data and correlate them to plant phenotypes, molecular markers, and genes of interest linked to the field phenotypes. TAMU will incorporate this technology into its world class sorghum breeding program to increase the rate of genetic improvement.
Texas Engineering Experiment Station (TEES)
Program: 
Project Term: 
03/01/2012 to 06/30/2015
Project Status: 
ALUMNI
Project State: 
Texas
Technical Categories: 
Texas Engineering Experiment Station (TEES) is using topology control as a mechanism to improve system operations and manage disruptions within the electric grid. The grid is subject to interruption from cascading faults caused by extreme operating conditions, malicious external attacks, and intermittent electricity generation from renewable energy sources. The Robust Adaptive Topology Control (RATC) system is capable of detecting, classifying, and responding to grid disturbances by reconfiguring the grid in order to maintain economically efficient operations while guaranteeing reliability. The RATC system would help prevent future power outages, which account for roughly $80 billion in losses for businesses and consumers each year. Minimizing the time it takes for the grid to respond to expensive interruptions will also make it easier to integrate intermittent renewable energy sources into the grid.
Texas Engineering Experiment Station (TEES)
Program: 
Project Term: 
02/01/2016 to 12/31/2018
Project Status: 
ALUMNI
Project State: 
Texas
Technical Categories: 
Texas Engineering Experiment Station (TEES) and their partners will build a micro-CPV system that incorporates waveguide technology. A waveguide concentrates and directs light to a specific point. TEES's system uses a grid of waveguides to concentrate sunlight onto a set of coupling elements which employ a 45 degree turning mirror to further concentrate the light and increase the efficiency of the system. Each coupling element is oriented to direct its specific beam of light towards high-efficiency, multi-junction solar cells. Further system efficiency is gained by capturing diffuse light in a secondary layer. The system also includes a secondary layer that captures diffuse sunlight, increasing its overall efficiency.
Texas Engineering Experiment Station (TEES)
Program: 
Project Term: 
04/01/2013 to 09/30/2015
Project Status: 
ALUMNI
Project State: 
Texas
Technical Categories: 
Texas Engineering Experiment Station (TEES) is developing a system to generate electricity from low-temperature waste heat streams. Conventional waste heat recovery technology is proficient at harnessing energy from waste heat streams that are at a much higher temperature than ambient air. However, existing technology has not been developed to address lower temperature differences. The proposed system cycles between heating and cooling a metal hydride to produce a flow of pressurized hydrogen. This hydrogen flow is then used to generate electricity via a turbine generator. TEES's system has the potential to be more efficient than conventional waste heat recovery technologies based on its ability to harness smaller temperature differences than are necessary for conventional waste heat recovery.
Texas Tech University
Program: 
Project Term: 
06/18/2018 to 12/15/2019
Project Status: 
ACTIVE
Project State: 
Texas
Technical Categories: 
Texas Tech University will develop a new type of neutron detector for geothermal and well logging systems. The technology aims to efficiently expand exploration for oil, gas, and geothermal resources into areas with more extreme conditions. Texas Tech seeks to produce solid-state thermal neutron detectors based on 100% boron-10 enriched boron nitride wide bandgap semiconductors. The new product would replace the pressurized and cumbersome He-3 gas tube detectors. Texas Tech's project is enabled by their previous work developing epitaxial growth technology to produce low-cost, free-standing, single-crystal boron nitride semiconductor wafers 4 inches in diameter. When integrated into thermal neutron detectors, boron nitride promises high neutron detection efficiency and improved sensitivity while withstanding extreme temperatures. Boron nitride neutron detectors are more flexible while requiring much lower voltages and no pressurization compared with He-3 detectors, resulting in significantly reduced size and weight, more versatile form factors, faster response speed, improved sensitivity, higher reliability, and lower costs. This detector technology has the potential to improve efficiency and reduce costs for new energy materials exploration and extraction.
Program: 
Project Term: 
01/01/2012 to 06/30/2015
Project Status: 
ALUMNI
Project State: 
Texas
Technical Categories: 

The University of Houston is developing a low-cost, high-current superconducting wire that could be used in high-power wind generators. Superconducting wire currently transports 600 times more electric current than a similarly sized copper wire, but is significantly more expensive. The University of Houston's innovation is based on engineering nanoscale defects in the superconducting film. This could quadruple the current relative to today's superconducting wires, supporting the same amount of current using 25% of the material. This would make wind generators lighter, more powerful and more efficient. The design could result in a several-fold reduction in wire costs and enable their commercial viability of high-power wind generators for use in offshore applications.

Program: 
Project Term: 
11/13/2013 to 08/12/2015
Project Status: 
ALUMNI
Project State: 
Texas
Technical Categories: 
The University of Houston is developing a battery with a new water-based, lithium-ion chemistry that makes use of sustainable, low-cost, and high-energy organic materials. Conventional lithium-ion batteries include volatile materials and chemistries that necessitate considerable packaging to ensure safety. This additional packaging results in a heavier, bulkier battery and limits where the battery can be placed within the vehicle. In contrast, the University of Houston's organic materials are readily available, safe, and non-volatile, making them ideal for use in battery construction. The University of Houston will identify, synthesize, and optimize new organic compounds for storage that are inherently safer and require less heavy shielding to safely construct them.
University of Texas at Austin (UT Austin)
Program: 
Project Term: 
10/01/2012 to 12/31/2015
Project Status: 
ALUMNI
Project State: 
Texas
Technical Categories: 
The Center for Electromechanics at the University of Texas at Austin (UT Austin) is developing an at-home natural gas refueling system that compresses natural gas using a single piston. Typically, at-home refueling stations use reciprocating compressor technology, in which an electric motor rotates a crankshaft tied to several pistons in a multi-stage compressor. These compressor systems can be inefficient and their complex components make them expensive to manufacture, difficult to maintain, and short-lived. The UT Austin design uses a single piston compressor driven by a directly coupled linear motor. This would eliminate many of the moving components associated with typical reciprocating compressors, reducing efficiency losses from friction, increasing reliability and durability, and decreasing manufacturing and maintenance costs.
University of Texas at Austin (UT Austin)
Program: 
Project Term: 
03/28/2013 to 09/26/2016
Project Status: 
ALUMNI
Project State: 
Texas
Technical Categories: 

The University of Texas at Austin (UT Austin) is developing low-cost coatings that control how light enters buildings through windows. By individually blocking infrared and visible components of sunlight, UT Austin's design would allow building occupants to better control the amount of heat and the brightness of light that enters the structure, saving heating, cooling, and lighting costs. These coatings can be applied to windows using inexpensive techniques similar to spray-painting a car to keep the cost per window low. Windows incorporating these coatings and a simple control system have the potential to dramatically enhance energy efficiency and reduce energy consumption throughout the commercial and residential building sectors, while making building occupants more comfortable.

University of Texas at Austin (UT Austin)
Program: 
Project Term: 
11/21/2011 to 06/30/2015
Project Status: 
ALUMNI
Project State: 
Texas
Technical Categories: 
The University of Texas at Austin (UT Austin) will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin's thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.
University of Texas at Dallas (UT Dallas)
Program: 
Project Term: 
06/07/2012 to 02/15/2015
Project Status: 
ALUMNI
Project State: 
Texas
Technical Categories: 
University of Texas at Dallas (UT Dallas) is developing a unique electric motor with the potential to efficiently power future classes of EVs and renewable power generators. Unlike many of today's best electric motors--which contain permanent magnets that use expensive, imported rare earths--UT Dallas' motor completely eliminates the use of rare earth materials. Additionally, the motor contains two stators. The stator is the stationary part of the motor that uses electromagnetism to help its rotor spin and generate power. The double-stator design has the potential to generate very high power densities at substantially lower cost than existing motors. In addition, this design can operate under higher temperatures and in more rugged environments. This project will focus on manufacturing and testing of a 100 kW motor with emphasis on low cost manufacturing for future use in EVs and renewable power generators.