Sorry, you need to enable JavaScript to visit this website.

ARPA-E Projects

Search ARPA-E Projects by Keyword

Displaying 1 - 14 of 14
Program: 
Project Term: 
02/01/2013 to 02/15/2015
Project Status: 
ALUMNI
Project State: 
Utah
Technical Categories: 
Ceramatec is developing a small-scale reactor to convert natural gas into benzene--a feedstock for industrial chemicals or liquid fuels. Natural gas as a byproduct is highly abundant, readily available, and inexpensive. Ceramatec's reactor will use a one-step chemical conversion process to convert natural gas into benzene. This one-step process is highly efficient and prevents the build-up of solid residue that can occur when gas is processed. The benzene that is produced can be used as a starting material for nylons, polycarbonates, polystyrene, epoxy resins, and as a component of gasoline.
Program: 
Project Term: 
02/01/2013 to 03/31/2017
Project Status: 
ALUMNI
Project State: 
Utah
Technical Categories: 

Ceramatec is developing a solid-state fuel cell that operates in an 'intermediate' temperature range that could overcome persistent challenges faced by both high temperature and low temperature fuel cells. The advantages compared to higher temperature fuel cells are less expensive seals and interconnects, as well as longer lifetime. The advantages compared to low temperature fuel cells are reduced platinum requirements and the ability to run on fuels other than hydrogen, such as natural gas or methanol. Ceramatec's design would use a new electrolyte material to transport protons within the cell and advanced electrode layers. The project would engineer a fuel cell stack that performs at lower cost than current automotive designs, and culminate in the building and testing of a short fuel cell stack capable of meeting stringent transportation requirements.

Program: 
Project Term: 
01/01/2014 to 01/14/2017
Project Status: 
ALUMNI
Project State: 
Utah
Technical Categories: 
Ceramatec is developing new batteries that make use of a non-porous, high ion conductivity ceramic membrane employing a lithium-sulfur (Li-S) battery chemistry. Porous separators found in today's batteries contain liquids that negatively impact cycle life. To address this, Ceramatec's battery includes a ceramic membrane to help to hold charge while not in use. This new design would also provide load bearing capability, improved mechanical integrity, and extend battery life. Ceramatec will build and demonstrate its innovative, low-cost, non-porous membrane in a prototype Li-S battery with a smaller size and higher storage capacity than conventional batteries. This battery pack could offer high energy density--greater than 300 Watt hours per kilogram--at a price of approximately $125-150/kWh.
Program: 
Project Term: 
11/15/2017 to 02/29/2020
Project Status: 
ACTIVE
Project State: 
Utah
Technical Categories: 

Chemtronergy will develop an advanced solid oxide fuel cell (SOFC) system to electrochemically convert ammonia into electricity. Conventional SOFC systems are manufactured using ceramic fabrication techniques that are time-consuming, energy-intensive, and have high material costs. SOFCs also typically operate at 700-900°C to chemically activate the fuel feedstock and ensure that it is sufficiently cracked or reformed for electrochemical use. This high temperature, however, imposes harsh operating conditions and stresses on the materials, which further increases costs. To address these challenges, the team proposes to lower the operating temperature below 650°C and to develop anode, cathode, and electrolyte materials using a combination of advanced materials discovery, reaction kinetics modeling, and 3D printing technology for large-scale rapid prototyping. The team hopes to greatly reduce the cost of SOFC systems while providing a distributed power-generating option with high efficiency, long life, and a reduced carbon footprint.

Program: 
Project Term: 
11/01/2014 to 12/31/2016
Project Status: 
CANCELLED
Project State: 
Utah
Technical Categories: 
Materials & Systems Research, Inc. (MSRI) is developing an intermediate-temperature fuel cell capable of electrochemically converting natural gas into electricity or liquid fuel in a single step. Existing solid-oxide fuel cells (SOFCs) convert the chemical energy of hydrocarbons--such as hydrogen or methane--into electricity at higher efficiencies than traditional power generators, but are expensive to manufacture and operate at extremely high temperatures, introducing durability and cost concerns over time. Existing processes for converting methane to liquid transportation fuels are also capital intensive. MSRI's technology would convert natural gas into liquid fuel using efficient catalysts and a cost-effective fabrication process that can be readily scaled up for mass production. MSRI's technology will provide low-cost power or liquid fuel while operating in a temperature range of 400-500ºC, enabling better durability than today's high-temperature fuel cells.
Materials & Systems Research, Inc. (MSRI)
Program: 
Project Term: 
10/01/2012 to 06/30/2016
Project Status: 
ALUMNI
Project State: 
Utah
Technical Categories: 

Materials & Systems Research, Inc. (MSRI) is developing a high-strength, low-cost solid-state electrolyte membrane structure for use in advanced grid-scale sodium batteries. The electrolyte, a separator between the positive and negative electrodes, carries charged materials called ions. In the solid electrolyte sodium batteries, sodium ions move through the solid-state ceramic electrolyte. This electrolyte is normally brittle, expensive, and difficult to produce because it is formed over the course of hours in high-temperature furnaces. With MSRI's design, this ceramic electrolyte will be produced cheaply within minutes by single-step coating technologies onto high-strength support materials. The high-strength support material provides excellent structural integrity, much superior to the conventional cell design, which depends solely on the brittle ceramic material for its strength. The resulting stronger, cheaper sodium battery design will enable a new generation of low-cost, safe, and reliable batteries for grid-scale energy storage applications.

Program: 
Project Term: 
06/05/2017 to 04/30/2019
Project Status: 
CANCELLED
Project State: 
Utah
Technical Categories: 

Storagenergy Technologies will develop a solid-state electrolyzer that uses nitrogen or air for high-rate ammonia production. Current electrolyzer systems for ammonia production have several challenges. Some use acidic membranes that can react with ammonia, resulting in lower conductivity and reduced membrane life. Operation at conventional low temperatures (<100°C) traditionally have low rates of reactions, while those that operate at high temperatures (>500°C) have long-heating processes that make them less practical for intermittent operation using renewable energy. The Storagenergy team has chosen a system that operates at an intermediate temperature (100-300°C) and uses an alkaline membrane environment to minimize side-reactions with the ammonia. To develop their technology, the team will combine a low-cost solid-state hydroxide conducting membrane, a nanostructured cathode catalyst, and a noble metal-free nanoparticle catalyst on the anode. This proposed system will synthesize ammonia more efficiently and at much lower temperatures and pressures than traditional ammonia production techniques. The modular nature of the system will also allow it to be deployed near the point of use.

Sustainable Energy Solutions (SES)
Program: 
Project Term: 
07/14/2010 to 03/31/2015
Project Status: 
ALUMNI
Project State: 
Utah
Technical Categories: 
Sustainable Energy Solutions (SES) is developing a process to capture CO2 from the exhaust gas of coal-fired power plants by desublimation--the conversion of a gas to a solid. Capturing CO2 as a solid and delivering it as a liquid avoids the large energy cost of CO2 gas compression. SES' capture technology facilitates the prudent use of available energy resources; coal is our most abundant energy resource and is an excellent fuel for baseline power production. SES capture technology can capture 99% of the CO2 emissions in addition to a wide range of other pollutants more efficiently and at lower costs than existing capture technologies. SES' capture technology can be readily added to our existing energy infrastructure.
Program: 
Project Term: 
12/01/2011 to 02/28/2015
Project Status: 
ALUMNI
Project State: 
Utah
Technical Categories: 
The University of Utah is developing a compact hot-and-cold thermal battery using advanced metal hydrides that could offer efficient climate control system for EVs. The team's innovative designs of heating and cooling systems for EVs with high energy density, low-cost thermal batteries could significantly reduce the weight and eliminate the space constraint in automobiles. The thermal battery can be charged by plugging it into an electrical outlet while charging the electric battery and it produces heat and cold through a heat exchanger when discharging. The ultimate goal of the project is a climate-controlling thermal battery that can last up to 5,000 charge and discharge cycles while substantially increasing the driving range of EVs, thus reducing the drain on electric batteries.
Program: 
Project Term: 
06/21/2019 to 06/20/2022
Project Status: 
ACTIVE
Project State: 
Utah
Technical Categories: 
The University of Utah will develop ultra-low power sensors engineered to passively detect specific volatile emissions, and enable the early detection of invasive weeds and/or insects in biofuel crop production. Farmers currently lose about 40% of crops due to weeds and insects that ideally need to be removed within a week of detection to prevent significant damage. Earlier detection could minimize such losses, and enable decreased applications of pesticides and herbicides, significantly increasing the overall energy efficiency of crop production and economic viability of energy biomass generation.
Program: 
Project Term: 
02/18/2014 to 09/30/2019
Project Status: 
ALUMNI
Project State: 
Utah
Technical Categories: 

The University of Utah is developing a reactor that dramatically simplifies titanium production compared to conventional processes. Today's production processes are expensive and inefficient because they require several high-energy melting steps to separate titanium from its ores. The University of Utah's reactor utilizes a magnesium hydride solution as a reducing agent to break less expensive titanium ore into its components in a single step. By processing low-grade ore directly, the titanium can be chemically isolated from other impurities. This design eliminates the series of complex, high-energy melting steps associated with current titanium production. Consolidating several energy intensive steps into one reduces both the cost and energy inputs associated with titanium extraction.

Program: 
Project Term: 
01/10/2014 to 03/19/2018
Project Status: 
ALUMNI
Project State: 
Utah
Technical Categories: 

The University of Utah is developing a light metal sorting system that can distinguish multiple grades of scrap metal using an adjustable and varying magnetic field. Current sorting technologies based on permanent magnets can only separate light metals from iron-based metals and tend to be inefficient and expensive. The University of Utah's sorting technology utilizes an adjustable magnetic field rather than a permanent magnet to automate scrap sorting, which could offer increased accuracy, less energy consumption, lower CO2 emissions, and reduced costs. Due to the flexibility of this design, the system could be set to sort for any one metal at a time rather than being limited to sorting for a specific metal.

Program: 
Project Term: 
01/01/2013 to 04/06/2017
Project Status: 
ALUMNI
Project State: 
Utah
Technical Categories: 

Utah State University (USU) is developing electronic hardware and control software to create an advanced battery management system that actively maximizes the performance of each cell in a battery pack. No two battery cells are alike--they differ over their life-times in terms of charge and discharge rates, capacity, and temperature characteristics, among other things. Traditionally, these issues have been managed by matching similarly performing cells at the factory level and conservative design and operation of battery packs, but this is an incomplete solution, leading to costly batching of cells and overdesign of battery packs. USU's flexible, modular, cost-effective design would represent a dramatic departure from today's systems, offering dynamic control at the cell-level to their physical limits and side stepping existing issues regarding the mismatch and uncertainty of battery cells throughout their useful life.

Utah State University (USU)
Program: 
Project Term: 
09/15/2017 to 03/14/2019
Project Status: 
ALUMNI
Project State: 
Utah
Technical Categories: 

Utah State University (USU) will develop a technoeconomic analysis to assess the feasibility and environmental and economic impacts of various electric roadway technologies. This project will aggregate, synthesize, and link previously isolated data sets to form a high-resolution, comprehensive assessment of electric roadways at the regional scale. Localized grid and road construction cost estimates are being considered. Targeted outcomes include identification of first adopters, economic and environmental cost/benefit of incremental deployment, and technology gaps that can accelerate adoption. By resolving these key questions, this project endeavors to catalyze public and private investment in electric roadway technology development, pilot projects, infrastructure deployment, and market adoption. The team will also evaluate the technology gaps and the value proposition for broader incremental rollout of electric roadways across the U.S. If successful, this project will provide actionable information regarding guidelines for incremental rollout of electric roadways and quantified metrics that tie technology gaps to their impact on accelerating market adoption.