Sorry, you need to enable JavaScript to visit this website.

ARPA-E Projects

Search ARPA-E Projects by Keyword

Displaying 1 - 15 of 15
Astronautics Corporation of America
Program: 
Project Term: 
09/01/2010 to 04/30/2014
Project Status: 
ALUMNI
Project State: 
Wisconsin
Technical Categories: 
Astronautics Corporation of America is developing an air conditioning system that relies on magnetic fields. Typical air conditioners use vapor compression to cool air. Vapor compression uses a liquid refrigerant to circulate within the air conditioner, absorb the heat, and pump the heat out into the external environment. Astronautics' design uses a novel property of certain materials, called "magnetocaloric materials", to achieve the same result as liquid refrigerants. These magnetocaloric materials essentially heat up when placed within a magnetic field and cool down when removed, effectively pumping heat out from a cooler to warmer environment. In addition, magnetic refrigeration uses no ozone-depleting gases and is safer to use than conventional air conditioners, which are prone to leaks.
Program: 
Project Term: 
09/09/2019 to 09/08/2022
Project Status: 
ACTIVE
Project State: 
Wisconsin
Technical Categories: 
Program: 
Project Term: 
12/19/2017 to 05/18/2020
Project Status: 
ACTIVE
Project State: 
Wisconsin
Technical Categories: 

Imagen Energy will develop a silicon carbide (SiC)-based compact motor drive system to efficiently control high-power (greater than 500 kW) permanent magnet electric motors operating at extremely high speed (greater than 20,000 rpm). Imagen's design will address a major roadblock in operating electric motors at high speed, namely overcoming large back electromotive forces (BEMF). Their solution hopes to maximize the capabilities of the SiC technology and associated digital control platform, thereby bringing the overall drive system performance parameters to levels unachievable by current Si-based power conversion systems. If successful, the project team will demonstrate a motor drive capable of handling large BEMF and increase motor system efficiency over a broad range of operating speeds, a useful combination for high-speed applications in the oil and gas industry, high-speed/high-power compressors, grid-connected energy storage, and renewable energy generation.

Marquette University
Program: 
Project Term: 
12/15/2017 to 12/14/2020
Project Status: 
ACTIVE
Project State: 
Wisconsin
Technical Categories: 

Marquette University will develop a small, compact, lightweight, and efficient 1 MW battery charger for electric vehicles that will double the specific power and triple power density compared to the current state-of-the-art. The team aims to use MOSFET switches based on silicon carbide to ensure the device runs efficiently while handling very large amounts of power in a small package. If successful, the device could help to dramatically reduce charging times for electric vehicles to a matter of minutes - promoting faster adoption of electric vehicles with longer range, greater energy efficiency, and reduced range anxiety.

Marquette University
Program: 
Project Term: 
06/02/2019 to 06/02/2021
Project Status: 
ACTIVE
Project State: 
Wisconsin
Technical Categories: 

Marquette University will leverage the technology gap presented by the lack of DC breaker technology. The project objective is to create an industry standard DC breaker that is compact, efficient, ultra-fast, lightweight, resilient, and scalable. The proposed solution will use a novel current source to force a zero current in the main current conduction path, providing a soft transition when turning on the DC breaker. A state-of-the-art actuator that can produce significantly more force than current solutions will also be used. The approach represents a transformational DC breaker scalable across voltage and current in medium voltage DC applications, such as power distribution, solar, wind, and electric vehicles.

Program: 
Project Term: 
06/12/2018 to 06/11/2020
Project Status: 
ACTIVE
Project State: 
Wisconsin
Technical Categories: 

Scanalytics will develop pressure-sensitive flooring underlayers capable of sensing large areas of commercial buildings with a high-resolution and fast response time. This technology will enable the precise counting of people in commercial environments like stores, offices, and convention centers. The floor sensors will consist of a material which changes electrical resistance when compressed. Conductive elements above and below the material will measure the resistance at a grid of points within the floor mat, and electronics will control the switching between sensors, cache the results for transmission, and transmit the readings to a local gateway for analysis. The team's system and data processing algorithms will be developed to resolve multiple people in close proximity, as well as account for non-typical travel methods such as wheelchairs and crutches. This occupancy information may be passed directly to HVAC control, or combined with occupancy information from other sensors to manage the heating, cooling and air flow in order to maximize building energy efficiency and provide optimal human comfort. Energy costs of heating and cooling can be reduced by up to 30% by training the building management system to deliver the right temperature air when and where it is needed.

University of Wisconsin-Madison (UW-Madison)
Program: 
Project Term: 
01/09/2018 to 01/08/2021
Project Status: 
ACTIVE
Project State: 
Wisconsin
Technical Categories: 

The University of Wisconsin-Madison (UW-Madison) and its project team will develop new integrated motor drives (IMDs) using current-source inverters (CSIs). Recent advances in both silicon carbide (SiC) and gallium nitride (GaN) wide-bandgap semiconductor devices make these power switches well-suited for the selected CSI topology that the team plans to integrate into high-efficiency electric motors with spinning permanent magnets. The objective is to take advantage of the special performance characteristics of the technology to increase the penetration of variable-speed drives into heating, ventilating, and air conditioning (HVAC) applications. Many of the HVAC installations in the U.S. residential and commercial sectors still use constant-speed motors even though there is a well-recognized potential for major energy savings available by converting them to variable-speed operation. If successful, the new IMDs will be capable of producing significant energy savings in a wide variety of industrial, commercial, and residential applications ranging from air conditioners to pumps and compressors.

Program: 
Project Term: 
08/06/2018 to 08/05/2020
Project Status: 
ACTIVE
Project State: 
Wisconsin
Technical Categories: 
The University of Wisconsin - Madison will develop components for a hybrid distributed energy generation system that couples a pressurized solid oxide fuel cell (SOFC) with a premixed compression ignition (PCI) engine system. In the resulting system, gases that leave the fuel cell, which consumes about 75% of the fuel, are directed into the engine to be ignited by compression of the pistons. To achieve a targeted 70% electric efficiency, the SOFC system must operate near 75% fuel utilization. When operating at this high level of fuel utilization, however, the flame speed of the leftover fuel in the cell's "tailgas" is too low to be used effectively in a conventional spark-ignited engine. The team will address this challenge by using a novel, PCI engine concept that adds an extra burst of spark-ignited natural gas, improving engine efficiency. The system will be analyzed in conjunction with a next generation, intermediate temperature (600°C to 800°C), metal-supported SOFC, but the final engine system will be designed to be suitable with any pressurized, intermediate temperature SOFC. With this universal capability, the final product will be an engine system that can "plug into" any intermediate temperature SOFC system. The team's design targets larger industrial applications, aiming for systems as large as 1MW.
University of Wisconsin-Madison (UW-Madison)
Program: 
Project Term: 
05/15/2019 to 05/14/2022
Project Status: 
ACTIVE
Project State: 
Wisconsin
Technical Categories: 
Program: 
Project Term: 
02/04/2019 to 02/03/2022
Project Status: 
ACTIVE
Project State: 
Wisconsin
Technical Categories: 
The University of Wisconsin's integrated toolset seeks to expedite molten salt materials development for technology by two orders of magnitude, compared with current methods. The team will combine advances in additive manufacturing, in-place testing for materials/salt compatibility, new molten salt-resistant mini-electrode designs, and machine learning algorithms to optimize and accelerate identification of molten salt corrosion-resistant materials. Those materials can be used in energy applications including molten salt nuclear reactors, concentrated solar plants, and thermal storage.
University of Wisconsin-Madison (UW-Madison)
Program: 
Project Term: 
10/01/2015 to 09/30/2019
Project Status: 
ALUMNI
Project State: 
Wisconsin
Technical Categories: 
The University of Wisconsin (UW-Madison) and its partner Oak Ridge National Laboratory will develop enabling technologies for low-cost, high-performance air-cooled heat exchangers. The objective is to create an optimization algorithm in order to identify and design a novel heat exchanger topology with very high heat transfer performance. The team also plans to develop a high-thermal conductivity polymer composite filament that can be used in additive manufacturing (3D printing) to produce the high-performance heat exchanger design. Due to the design freedom enabled by additive manufacturing, the team plans to develop 3D heat exchanger geometries that optimize heat transfer and decrease the total footprint required for an air-cooled system. Both of these innovations could enhance air-side heat transfer and improve the efficiency and cost of heat exchangers.
University of Wisconsin-Madison (UW-Madison)
Program: 
Project Term: 
02/12/2013 to 05/31/2014
Project Status: 
CANCELLED
Project State: 
Wisconsin
Technical Categories: 
The University of Wisconsin-Madison (UW-Madison) and the University of Massachusetts-Lowell are developing a low-cost metal catalyst to produce fuel precursors using abundant and renewable solar energy, water, and waste CO2 inputs. When placed in sunlight, the catalyst's nanostructured surface enables the formation of hydrocarbons from CO2 and water by a plasmonic catalytic effect. These hydrocarbons can be refined and blended to produce a fuel compatible with typical cars and trucks. Wisconsin is proving the technology in a small reactor before scaling up conceptual designs that could be implemented in a large solar refinery. The ability to convert CO2 waste into a viable fuel would decrease the transportation sector's carbon footprint and provide an alternative domestic source of fuel.
University of Wisconsin-Madison (UW-Madison)
Program: 
Project Term: 
08/11/2016 to 02/29/2020
Project Status: 
ACTIVE
Project State: 
Wisconsin
Technical Categories: 

The University of Wisconsin-Madison (UW-Madison) and its partners will develop realistic transmission system models and scenarios that will serve as test cases to reduce barriers to the development and adoption of new technologies in grid optimization and control. The EPIGRIDS project aims to construct realistic grid models by using software to emulate the transmission and generation expansion decision processes used by utility planners. This synthetic model development will utilize Geographic Information Systems (GIS) data on population density, industrial and commercial energy consumption patterns, and land use, over sizes ranging from the city-level to continental-scale. In order to test the robustness of the system's solutions, it will allow users to tailor specific data sets and scenarios to challenge particular aspects of optimization and control algorithm development. Flexible methodologies for data set construction and connecting features of these data sets to geographically described energy use and land use constraints will enable collaborative development of new models, far beyond those directly delivered by this project.

University of Wisconsin-Milwaukee (UWM)
Program: 
Project Term: 
03/15/2018 to 03/14/2021
Project Status: 
ACTIVE
Project State: 
Wisconsin
Technical Categories: 

The University of Wisconsin-Milwaukee (UWM) will lead a MARINER Category 5 project to develop a breeding program and enable the development of macroalgae varieties that consistently produce high yields under farmed conditions. Controlled genetic improvements through crop breeding require establishing a bank of genetically homogeneous lines that are examined for markers and traits important for domestication and production. The researchers will sample giant sea kelp from the Southern California Bight, an area of high genetic diversity. The team will assess phenotypic performance of these samples at a real-world farm location at Catalina Island, which has oceanographic conditions that resemble the warm, offshore waters suitable for macroalgae farming. Traits such as survival, growth rate, temperature tolerance and photosynthetic efficiency will be measured at different stages. The team will establish genomic resources for giant kelp, and utilize them in conjunction with the field performance observed to predict the best performing varieties from approximately 50,000 possible crosses. If successful, these germplasm lines will constitute a "seed stock" similar to that established for agricultural crops that can be used by breeders to stage model-based, efficient, cost-effective, and environmentally sound targeted genome-based selection.

Wisconsin Engine Research Consultants (WERC)
Program: 
Project Term: 
12/17/2015 to 10/16/2020
Project Status: 
ACTIVE
Project State: 
Wisconsin
Technical Categories: 
Wisconsin Engine Research Consultants (WERC) and its partners Adiabatics, Briggs and Stratton, and the University of Wisconsin-Madison will develop a generator using an internal combustion engine (ICE) that incorporates an advanced spark-assisted homogeneous charge compression ignition (SA-HCCI) system. Traditional internal combustion engines use the force generated by the combustion of a fuel (e.g. natural gas) to move a piston, transferring chemical energy to mechanical energy. This can then be used in conjunction with a generator to create electricity. SA-HCCI systems achieve combustion by compressing their fuel/air mix to the point of ignition, with a spark helping to initiate the process. These systems run very fuel lean and achieve high efficiency and waste less heat compared to conventional ICEs. In addition, the WERC team will further increase efficiency by incorporating thermal barrier coatings, an advanced boost system, and an optimized low-friction combustion chamber.