Sorry, you need to enable JavaScript to visit this website.

Building Efficiency

Battelle Memorial Institute

Cascade Reverse Osmosis and the Absorption Osmosis Cycle

Battelle Memorial Institute is developing a new air conditioning system that uses a cascade reverse osmosis-based absorption cycle. Analyses show that this new cycle can be as much as 60% more efficient than vapor compression, which is used in 90% of air conditioners. Traditional vapor-compression systems use polluting liquids for a cooling effect. Absorption cycles use benign refrigerants such as water, which is absorbed in a salt solution and pumped as liquid--replacing compression of vapor. The refrigerant is subsequently separated from absorbing salt using heat for re-use in the cooling cycle. Battelle is replacing thermal separation of refrigerant with a more efficient reverse osmosis process. Research has shown that the cycle is possible, but further investment will be needed to reduce the number of cascade reverse osmosis stages and therefore cost.

Boston University

Scalable, Dual-Mode Occupancy Sensing for Commercial Venues

Boston University (BU) will develop an occupancy sensing system to estimate the number of people in commercial spaces and monitor how this number changes over time. Their Computational Occupancy Sensing SYstem (COSSY) will be designed to deliver robust performance by combining data from off-the-shelf sensors and cameras. Data streams will be interpreted by advanced detection algorithms to provide an occupancy estimate. All processing will be performed locally to mitigate security concerns. The system will be designed to accommodate various room sizes and geometries. Occupancy data will be sent to the building control system to manage the heating, cooling, and air flow in order to maximize building energy efficiency and provide optimal human comfort. Energy costs of heating and cooling can be reduced by up to 30% by training the building management system to deliver the right temperature air when and where it is needed. The system's use of components readily available in the market today promises low cost and fast commercialization.

Case Western Reserve University

Data Analytics for Virtual Energy Audits and Value Capture Assessments of Buildings

Case Western Reserve University will develop a data analytics approach to building-efficiency diagnosis and prognostics. Their tool, called EDIFES (Energy Diagnostics Investigator for Efficiency Savings), will not require complex or expensive computational simulation, physical audits, or building automation systems. Instead, the tool will map a building's energy signature through a rigorous analysis of multiple datastreams. Combining knowledge of specific climatic, weather, solar insolation, and utility meter data through data assembly, the team will analyze these time-series datastreams to reveal patterns and relationships that were previously ignored or neglected. EDIFES will provide a virtual energy audit combined with a predictive energy usage calculator for efficiency solutions without setting foot in a building. The team's goal is to design EDIFES in such a way that beyond time-series, whole building utility data, only minimal information will be required from the building owner for accurate virtual energy audits that identify efficiency problems and solutions and provide continuous efficiency monitoring. EDIFES will be a resource for equipment providers and contractors to illustrate replacement equipment value, a mechanism for utilities to measure the impact of energy efficiency programs, and a tool for financiers to evaluate the potential risk and opportunity of efficiency investments. EDIFES will target the light commercial building space where minimal tools are available and a high potential for savings exists.

Colorado State University

Paintable Heat-Reflective Coatings for Low-Cost Energy Efficient Windows

Colorado State University (CSU) and its partners are developing an inexpensive, polymer-based, energy-saving material that can be applied to windows as a retrofit. The team will develop a coating consisting of polymers that can rapidly self-assemble into orderly layers that will reflect infrared wavelengths but pass visible light. As such, the coating will help reduce building cooling requirements and energy use without darkening the room. The polymers can be applied as a paint, meaning that deployment could be faster, less expensive, and more widespread because homeowners can apply the window coatings themselves instead of paying for a technician. The team estimates that up to 75% of the dry film could be produced from commodity plastic, which has the potential to significantly reduce the current costs associated with manufacturing window coatings.

Cornell University

Indoor Occupant Counting Based on RF Backscattering

Cornell University will develop an occupant monitoring system to enable more efficient control of HVAC systems in commercial buildings. The system is based on a combination of "active" radio frequency identification (RFID) readers and "passive" tags. Instead of requiring occupants to wear tags, the tags, as coordinated landmarks, will be distributed around a commercial area to enable an accurate occupancy count. When occupants, stationary or moving, are present among the RFID reader and multiple tags, their interference on the backscattering paths can be exploited to gain insights on the room population. The distributed tags will operate without the need for a power source. The system will employ efficient biomechanical models and inverse imaging algorithms to estimate the size, posture, and motion of the collected geometry and distinguish people from furniture and pets. Occupancy data is then sent to the building control system to manage the heating, cooling and air flow in order to maximize building energy efficiency while providing optimal human comfort.

Cornell University

Thermoregulatory Clothing System for Building Energy Saving

Cornell University will develop thermoregulatory apparel that enables the expansion of the comfortable temperature range in buildings by more than 4°F in both heating and cooling seasons. Cornell's thermoregulatory apparel integrates advanced textile technologies and state-of-the-art wearable electronics into a functional apparel design without compromising comfort, wearability, washability, appearance, or safety. The thermoregulatory clothing system senses the wearer's skin temperature and activates a heated or cooled airflow around the individual, reducing the energy required to heat or cool the building itself by satisfying the comfort requirements of the individual.

Dais Analytic Corporation

Nanotechnology Membrane-Based Dehumidifier

Dais Analytic Corporation is developing a product called NanoAir which dehumidifies the air entering a building to make air conditioning more energy efficient. The system uses a polymer membrane that allows moisture but not air to pass through it. A vacuum behind the membrane pulls water vapor from the air, and a second set of membranes releases the water vapor outside. The membrane's high selectivity translates into reduced energy consumption for dehumidification. Dais' design goals for NanoAir are the use of proprietary materials and processes and industry-standard installation techniques. NanoAir is also complementary to many other energy saving strategies, including energy recovery. Dais received a separate award of up to $800,000 from the Department of the Navy to help decrease military fuel use.

Duke University

Detecting Human Presence Using Dynamic Metasurface Antennas

Duke University will develop a residential sensor system that uses a dynamic meta-surface radar antenna design to determine occupancy in residential buildings. Traditional line-of-sight movement sensors suffer from high error rates. To increase accuracy, the Duke team will develop a sensor that monitors electromagnetic waveforms that are scattered both directly and indirectly off a person, eliminating the need for a direct line-of-sight between the sensor and the person. The sensor hardware continuously generates distinct microwave patterns to probe all corners of the house. Once a person enters a room, their motion changes the scattering statistics of the environment, which is used to establish real-time room occupancy. These characteristics are then analyzed using machine-learning techniques to establish human presence. The radar antenna can quickly sample an area and this information can be used to distinguish humans with the sensitivity to detect even stationary human's micro movements such as breathing. Further, the system operates at microwave frequencies, ensuring minimal concern for human safety. The proposed sensor does not require an internet connection or communication links, ensuring minimal security and privacy concerns. If successful, the system promises detection of occupants and near-zero false negative rate without any complex user interactions.

Eclipse Energy Systems, Inc.

Eclipse Shield

Eclipse Energy Systems will further develop its proprietary transparent electrical conductor material (EclipseTEC) for use in low-emissivity (low-e) window films. Transparent, low-emissivity coatings improve building energy efficiency by reducing heat loss through the windows. Over the course of the project, the team will transfer their present technology for depositing EclipseTEC films to scalable manufacturing processes while preserving the desirable optical and low-e properties. Eclipse will partner with one or more companies offering thermal insulation solutions and incorporate EclipseTEC into their panes and/or applied products. The unique combined system will offer significant energy savings over traditional single-pane windows.

Endeveo, Inc

Hotspot Enabled Accurate Determination of Common Area Occupancy Using Network Tools (HEADCOUNT)

Endeveo will develop an occupancy sensor system to accurately determine the presence of occupants in residential buildings and enable temperature setbacks to provide energy savings of 30% per year. Their technique uses standard Wi-Fi-equipped devices, such as routers, to monitor an environment using the wireless channel state information (CSI) collected by these devices and occupancy-centric machine learning algorithms to determine occupancy from changes in CSI. The developed algorithms will distinguish between humans and pets, sense presence even when occupants are stationary for extended periods of time, and possess the flexibility to adapt to activities of daily living such as furniture being moved or opening doors. While their sensor hardware components use so-called "Wi-Fi protocols" to wirelessly probe an environment, they do not require nor utilize any internet access, Wi-Fi or otherwise. If successful, the system could offer cost-effective occupancy sensing to homes with and without internet service or broadband access.

Georgia Tech Research Corporation

Modular Thermal Hub for Building Heating, Cooling, and Water Heating

Georgia Tech Research Corporation is using innovative components and system design to develop a new type of absorption heat pump. Georgia Tech's new heat pumps are energy efficient, use refrigerants that do not emit greenhouse gases, and can run on energy from combustion, waste heat, or solar energy. Georgia Tech is leveraging enhancements to heat and mass transfer technology possible in micro-scale passages and removing hurdles to the use of heat-activated heat pumps that have existed for more than a century. Use of micro-scale passages allows for miniaturization of systems that can be packed as monolithic full-system packages or discrete, distributed components enabling integration into a variety of residential and commercial buildings. Compared to conventional heat pumps, Georgia Tech's design innovations will create an absorption heat pump that is much smaller, has higher energy efficiency, and can also be mass produced at a lower cost and assembly time. Georgia Tech received a separate award of up to $2,315,845 from the Department of the Navy to help decrease military fuel use.

Iowa State University

Simulation, Challenge Testing & Validation of Occupancy Recognition & CO2 Technologies

Iowa State University (ISU) will develop a comprehensive testing protocol and simulation tools to evaluate the energy savings and reliability of occupancy recognition sensor technologies for commercial and residential buildings. A barrier to wide adoption of new occupancy sensors is the lack of rigorous and widely accepted methodologies for evaluating the energy savings and reliability of occupancy recognition of these systems. To address this need, ISU's protocols will allow them to determine occupancy recognition, sensor effectiveness, and reliability in both laboratory and real-world conditions for residential and commercial applications. Using their protocol and simulation tools, sensor technologies will be tested, including occupancy presence technologies for residential buildings, occupant counting solutions for commercial buildings, and CO2 sensing technologies for commercial buildings. For commercial buildings, the office, and academic submarkets will be the focus of these efforts, two of the highest energy-consuming building sectors. For residential buildings, a diversity of building types and interior layouts located in Ames, Iowa will be used to conduct real-world field testing. Results from the proposed work will be used to develop the framework for two nationwide test standards.

IR Dynamics, LLC

Dynamic IR Window Film to Improve Window Energy Efficiency

IR Dynamics will develop a low-cost nanomaterial technology to be incorporated into flexible window films that will improve thermal insulation and solar heat gain. The team's nanomaterial will incorporate two materials. First, low-cost nanosheets will increase thermal resistance. Second, a new type of nanomaterial will allow heat, in the form of infrared radiation (IR) from the sun, to pass through the window when it is cold outside, helping to warm the room in cold weather. When it is hot outside, the material will block the solar IR from passing through the window and warming the interior. This same material reflects thermal radiation and displays a tunable emissivity, contributing more to its insulation value and energy retention. The dynamic IR reflectivity and emissivity are passive by nature, requiring no electronics or power source to shift, and only rely on environmental temperature changes. IR Dynamics' technology creates a window film that automatically adjusts depending on outside temperatures and can have a substantive impact in performance on single-pane and older variants of double-pane windows.

ITN Energy Systems, Inc.

Low-Cost Electrochromic Film on Plastic for Net-Zero Energy Building

ITN Energy Systems is addressing the high cost of electrochromic windows with a new manufacturing process: roll-to-roll deposition of the film onto flexible plastic surfaces. Production of electrochromic films on plastic requires low processing temperatures and uniform film quality over large surface areas. ITN is overcoming these challenges using its previous experience in growing flexible thin-film solar cells and batteries. By developing sensor-based controls, ITN's roll-to-roll manufacturing process yields more film over a larger area than traditional film deposition methods. Evaluating deposition processes from a control standpoint ultimately strengthens the ability for ITN to handle unanticipated deviations quickly and efficiently, enabling more consistent large-volume production. The team is currently moving from small-scale prototypes into pilot-scale production to validate roll-to-roll manufacturability and produce scaled prototypes that can be proven in simulated operating conditions. Electrochromic plastic films could also open new markets in building retrofit applications, vastly expanding the potential energy savings.

Massachusetts Institute of Technology

Advanced Technologies for Integrated Power Electronics

Massachusetts Institute of Technology (MIT) is teaming with Georgia Institute of Technology, Dartmouth College, and the University of Pennsylvania to create more efficient power circuits for energy-efficient light-emitting diodes (LEDs) through advances in 3 related areas. First, the team is using semiconductors made of high-performing gallium nitride grown on a low-cost silicon base (GaN-on-Si). These GaN-on-Si semiconductors conduct electricity more efficiently than traditional silicon semiconductors. Second, the team is developing new magnetic materials and structures to reduce the size and increase the efficiency of an important LED power component, the inductor. This advancement is important because magnetics are the largest and most expensive part of a circuit. Finally, the team is creating an entirely new circuit design to optimize the performance of the new semiconductors and magnetic devices it is using.

Material Methods, LLC

Phononic Heat Pump

Material Methods is developing a heat pump technology that substitutes the use of sound waves and an environmentally benign refrigerant for synthetic refrigerants found in conventional heat pumps. Called a thermoacoustic heat pump, the technology is based on the fact that the pressure oscillations in a sound wave result in temperature changes. Areas of higher pressure raise temperatures and areas of low pressure decrease temperatures. By carefully arranging a series of heat exchangers in a sound field, the heat pump is able to isolate the hot and cold regions of the sound waves. This technology is environmentally safe, and the simplicity of the mechanical system creates efficiencies that make the system cost competitive with traditional refrigerant-based systems.

Matrix Sensors, Inc

Stable, Low Cost, Low Power, CO2 Sensor for Demand-controlled Ventilation

Matrix Sensors and its partners will develop a low-cost CO2 sensor module that can be used to enable better control of ventilation in commercial buildings. Matrix Sensor's module uses a solid-state architecture that leverages scalable semiconductor manufacturing processes. Key to this architecture is a suitable sensor material that can selectively adsorb CO2, release the molecule when the concentration decreases, and complete this process quickly to enable real-time sensing. The team's design will use a new class of porous materials known as metal-organic frameworks (MOFs). MOFs possess high gas uptake properties, molecule selectivity and high stability. As the MOF adsorbs and desorbs CO2, a connected transducer detects the change in mass. Beyond developing the MOF, key goals for the team include developing capable transducers for the MOF gas sensor, as well as the development of wireless sensor module which will be self-contained including the sensor element, micro-processor, battery, and wireless interface. The sensor will be wall-mounted and easily installed since it will not require wired power. If successful, the project will result in a CO2 sensor system with a total cost of ownership that is 5 to 10x lower than today's systems.

N5 Sensors, Inc

Digital System-on-chip CO2 Sensor

N5 Sensors and its partners will develop and test a novel semiconductor-based CO2 sensor technology that can be placed on a single microchip. CO2 concentration data can help enable the use of variable speed ventilation fans in commercial buildings. CO2 sensing may also improve the comfort and productivity of people in commercial buildings, including academic spaces. N5 Sensor's solution will determine CO2 concentrations through absorption of CO2 when the concentrations are high in the environment, and desorption of CO2 when the concentrations are low. The team's project combines innovations in a number of areas: ultra-low power sensing architecture, semiconductor microfabrication, effective gas separation membranes, novel signal processing, and machine learning. If successful, the project can result in a 10x reduction in the price of CO2 sensors and the innovation will ultimately result in a low-cost, highly autonomous systems with "peel, stick and press button" type of installation and operation.

NanoSD, Inc.

Retrofittable and Transparent Super-Insulator for Single-Pane Windows

NanoSD, with its partners will develop a transparent, nanostructured thermally insulating film that can be applied to existing single-pane windows to reduce heat loss. To produce the nanostructured film, the team will create hollow ceramic or polymer nanobubbles and consolidate them into a dense lattice structure using heat and compression. Because it is mostly air, the resulting nanobubble structure will exhibit excellent thermal barrier properties. The film can be transparent because the nanostructures are too small to be seen, but achieving this transparency needs processing innovations for assembling the film. The film should also be lightweight, flexible, fire/chemical resistant, soundproof, and condensation resistant. The nanobubble film will be integrated with a low emissivity layer to achieve the final insulating performance. The team will use cost-effective processing and assembly technologies to manufacture its window coating at a cost less than $5 per square foot.

Northeastern University

Rapid Assessment of AlT2X2 (T = Fe, Co, Ni, X=B, C) Layered Materials for Sustainable Magnetocaloric Applications

Northeastern University, in partnership with the Ames Laboratory, will evaluate a range of new magnetocaloric compounds (AlT2X2) for potential application in room-temperature magnetic cooling. Magnetic refrigeration is an environmentally friendly alternative to conventional vapor-compression cooling technology. The magnetocaloric effect is triggered by application and removal of an applied magnetic field--adjusting the magnetic field translates into an adjustment in the temperature of the material. The benchmark magnetocaloric materials are based on the rare earth metal gadolinium (Gd), but gadolinium is scarce in the earth's crust and prohibitively expensive. Other magnetocaloric materials have similar rarity and cost constraints, or are brittle and undergo large volume changes during magnetic transition. Volume changes are problematic because a magnetocaloric working material must maintain mechanical and magnetic integrity over 300 million cycles in a ten-year lifetime. The Northeastern-led team is proposing to explore new magnetocaloric materials, AlT2X2 (where T=Fe, Mn, and/or Co, and X = B and/or C) comprised of abundant, non-toxic elements that can undergo a structural transition near room temperature. The material is projected to meet or exceed the performance of other candidate magnetocaloric materials due to its potential ease of fabrication, corrosion resistance, high mechanical integrity maintained through caloric phase change, and low heat capacity that fosters effective heat transfer. The project objectives are to ascertain the most promising compositions and magnetic field and temperature combinations to realize the optimal magnetocaloric response in this compound.


Subscribe to Building Efficiency