Sorry, you need to enable JavaScript to visit this website.

Distributed Generation

Cycling Hardware to Analyze and Ready Grid-Scale Electricity Storage

Methods for storing electricity for the electric power system (i.e. the grid) are developing rapidly, but widespread adoption of these technologies requires real-world data about their performance, economic benefit, and long-term reliability. The CHARGES program, short for "Cycling Hardware to Analyze and Ready Grid-Scale Electricity Storage," establishes two sites where ARPA-E-funded battery technologies will be tested under conditions designed to represent not just today's applications, but also the demands of tomorrow's electric power system. The program will establish realistic duty cycles for storage devices on a microgrid, and test them in both a controlled environment and under realistic microgrid operating conditions. The objective of the CHARGES program is to accelerate the commercialization of electrochemical energy storage systems developed in current and past ARPA-E-funded research efforts. The program aims to help ARPA-E-funded battery development teams improve their storage technologies to deliver substantial economic benefit under real-world conditions, both now and in the future.
For a detailed technical overview about this program, please click here.    

Full-Spectrum Optimized Conversion and Utilization of Sunlight

High utilization of renewable energy is a vital component of our energy portfolio. Solar energy systems can provide secure energy with predictable future costs--largely unaffected by geopolitics and climate--because sunshine is widely available and free. The projects that comprise ARPA-E's FOCUS program, short for "Full-Spectrum Optimized Conversion and Utilization of Sunlight," could pave the way for cost-competitive hybrid solar energy systems that combine the advantages of existing photovoltaic (PV) and concentrated solar power (CSP) technologies.
For a detailed technical overview about this program, please click here.  

Generators for Small Electrical and Thermal Systems

The GENSETS program aims to develop transformative generator technologies to enable widespread deployment of residential combined heat and power (CHP) systems. These small, natural gas-fueled systems can fulfill most of a US household's electricity and hot water needs, and if widely used could increase the overall efficiency of power generation in the US, and reduce greenhouse gas emissions.
For a detailed technical overview about this program, please click here.  

High Energy Advanced Thermal Storage

The projects that make up ARPA-E's HEATS program, short for "High Energy Advanced Thermal Storage," seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.
  For a detailed technical overview about this program, please click here.  

Innovative Development in Energy-Related Applied Science

The IDEAS program - short for Innovative Development in Energy-Related Applied Science - provides a continuing opportunity for the rapid support of early-stage applied research to explore pioneering new concepts with the potential for transformational and disruptive changes in energy technology. IDEAS awards, which are restricted to maximums of one year in duration and $500,000 in funding, are intended to be flexible and may take the form of analyses or exploratory research that provides the agency with information useful for the subsequent development of focused technology programs. IDEAS awards may also support proof-of-concept research to develop a unique technology concept, either in an area not currently supported by the agency or as a potential enhancement to an ongoing focused technology program. This program identifies potentially disruptive concepts in energy-related technologies that challenge the status quo and represent a leap beyond today's technology. That said, an innovative concept alone is not enough. IDEAS projects must also represent a fundamentally new paradigm in energy technology and have the potential to significantly impact ARPA-E's mission areas.

Micro-scale Optimized Solar-cell Arrays with Integrated Concentration

ARPA-E's MOSAIC program seeks to develop technologies and concepts that will lower the cost of solar photovoltaic (PV) power systems and improve their performance. Project teams will develop micro-scale concentrated photovoltaic systems (CPV) that are similar in cost and size to conventional solar PV systems, but with greatly increased performance levels. Multidisciplinary teams will leverage expertise in conventional flat-plate PV, CPV, manufacturing, optical engineering, and material science to produce a new class of PV panels. If successful, these technologies could facilitate cost-effective deployment of solar power systems across a wide range of geographical locations, lowering U.S. greenhouse gas emissions and reducing dependence on imported energy.
 For a detailed technical overview about this program, please click here.  

Open Funding Solicitation

In 2009, ARPA-E issued an open call for the most revolutionary energy technologies to form the agency's inaugural program. The first open solicitation was open to ideas from all energy areas and focused on funding projects already equipped with strong research and development plans for their potentially high-impact technologies. The projects chosen received a level of financial support that could accelerate technical progress and catalyze additional investment from the private sector. After only 2 months, ARPA-E's investment in these projects catalyzed an additional $33 million in investments. In response to ARPA-E's first open solicitation, more than 3,700 concept papers flooded into the new agency, which were thoroughly reviewed by a team of 500 scientists and engineers in just 6 months. In the end, 36 projects were selected as ARPA-E's first award recipients, receiving $176 million in federal funding.
 For a detailed technical overview about this program, please click here.  

Open Funding Solicitation

In 2012, ARPA-E issued its second open funding opportunity designed to catalyze transformational breakthroughs across the entire spectrum of energy technologies. ARPA-E received more than 4,000 concept papers for OPEN 2012, which hundreds of scientists and engineers thoroughly reviewed over the course of several months. In the end, ARPA-E selected 66 projects for its OPEN 2012 program, awarding them a total of $130 million in federal funding. OPEN 2012 projects cut across 11 technology areas: advanced fuels, advanced vehicle design and materials, building efficiency, carbon capture, grid modernization, renewable power, stationary power generation, water, as well as stationary, thermal, and transportation energy storage.
For a detailed technical overview about this program, please click here.  

Open Funding Solicitation

In 2015, ARPA-E issued its third open funding opportunity designed to catalyze transformational breakthroughs across the entire spectrum of energy technologies. ARPA-E received more than 2,000 concept papers for OPEN 2015, which hundreds of scientists and engineers thoroughly reviewed over the course of several months. In the end, ARPA-E selected 41 projects for its OPEN 2015 program, awarding them a total of $125 million in federal funding. OPEN 2015 projects cut across ten technology areas: building efficiency, industrial processes and waste heat, data management and communication, wind, solar, tidal and distributed generation, grid scale storage, power electronics, power grid system performance, vehicle efficiency, storage for electric vehicles, and alternative fuels and bio-energy.
For a detailed technical overview about this program, please click here.

Reliable Electricity Based on ELectrochemical Systems

Fuel cell technologies have been touted for decades due to their high chemical-to-electrical conversion efficiencies and potential for near-zero greenhouse gas emissions. Fuel cell technologies for power generation have not achieved widespread adoption, however, due primarily to their high cost relative to more established combustion technologies. There is a critical need to develop fuel cell technologies that can enable distributed power generation at low cost and high performance. The projects that comprise ARPA-E's Reliable Electricity Based on ELectrochemical Systems (REBELS) program include transformational fuel cell devices that operate in an intermediate temperature range in an attempt to create new pathways to achieve an installed cost to the end-user of less than $1,500/kW at moderate production volumes and create new fuel cell functionality that will help increase grid stability and integration of renewable energy technologies such as wind and solar.
For a detailed technical overview about this program, please click here.  

Solar Agile Delivery of Electrical Power Technology

The projects that make up ARPA-E's Solar ADEPT program, short for "Solar Agile Delivery of Electrical Power Technology," aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.
For a detailed technical overview about this program, please click here.  

1366 Technologies, Inc.

Direct Wafer: Enabling Terawatt Photovoltaics

1366 is developing a process to reduce the cost of solar electricity by up to 50% by 2020--from $0.15 per kilowatt hour to less than $0.07. 1366's process avoids the costly step of slicing a large block of silicon crystal into wafers, which turns half the silicon to dust. Instead, the company is producing thin wafers directly from molten silicon at industry-standard sizes, and with efficiencies that compare favorably with today's state-of-the-art technologies. 1366's wafers could directly replace wafers currently on the market, so there would be no interruptions to the delivery of these products to market. As a result of 1366's technology, the cost of silicon wafers could be reduced by 80%.

Accio Energy, Inc.

EHD Innovative Low-Cost Offshore Wind Energy

The team led by Accio Energy will develop an ElectroHydroDynamic (EHD) system that harvests energy from the wind through physical separation of charge rather than through rotation of an electric machine. The EHD technology entrains a mist of positively charged water droplets into the wind, which pulls the charge away from the electrically-grounded tower, thereby directly converting wind energy into a mounting voltage. The resulting High-Voltage Direct Current (HVDC) can then be transferred across higher efficiency power lines without the need for a generator, a gearbox, or costly high power AC-DC conversion required by traditional wind energy systems. The simple design of the EHD wind system is highly modular, and can be built with low-cost, mass manufacturing approaches. EHD systems also have minimal moving parts, and can be "containerized" for easy transport and installation at offshore sites. In contrast to the current trend for larger (and relatively expensive) turbines with increased power-per-tower, the EHD approach would utilize low-cost hardware with simple transport and installation, and native HVDC operation to reduce the cost of electricity from offshore wind. EHD technology can also operate at lower wind velocities than traditional turbines, and can thus increase the capacity factor at locations with highly variable winds. If successful, this project will demonstrate EHD technology as an entirely new option for offshore wind that offers a different path to cost effective utilization of a large renewable resource.

Aerodyne Research, Inc.

Single-Cylinder Two-Stroke Free-Piston Internal Combustion Generator

Aerodyne Research with partners from Stony Brook University, Precision Combustion, Inc., and C-K Engineering, Inc. will design and build a CHP generator based on a small single-cylinder, two-stroke free-piston internal combustion engine. Similar to an automotive internal combustion engine, the proposed system follows the same process: the combustion of natural gas fuel creates a force that moves a piston, transferring chemical energy to mechanical energy used in conjunction with a linear alternator to create electricity. The free-piston configuration used here, instead of a traditional slider-crank mechanism, has the potential to achieve high electrical conversion efficiency. Their design also includes a double-helix spring that replaces the crankshaft flywheel in conventional engines and can store 5-10 times the work output of the engine cycle and operates at high frequency, which is key to high energy density, compact size, low weight, and low cost. The system will also incorporate low temperature, glow plug-assisted homogeneous charge compression ignition (HCCI) combustion, which reduces heat loss from the engine and further increases efficiency.

Air Squared Inc.

A High Efficiency SACI 1 kW Generator System with Integrated Waste Energy Recovery

Air Squared with partners at Argonne National Laboratory, Purdue University, and Mississippi State University, will develop an advanced internal combustion engine (ICE) integrated with an organic Rankine cycle (ORC) for waste heat recovery. The ICE will use spark-assisted compression ignition (SACI) combustion, a turbulent jet ignition (TJI) fueling system, a high compression ratio, and aggressive exhaust gas recirculation to deliver a higher thermal efficiency with low emissions. Traditional internal combustion engines use the force generated by the combustion of a fuel (e.g. natural gas) to move a piston, transferring chemical energy to mechanical energy. This can then be used in conjunction with a generator to create electricity. SACI is an advanced combustion technique that uses a homogeneous mixture of fuel and air with spark assist to enable higher thermal efficiencies and lower emissions. The TJI combustion system further increases thermal efficiency by enabling reliable SACI combustion even with ultra-lean mixtures (i.e. high air to fuel ratio). The ORC design uses mostly the same components of a traditional Rankine cycle, but uses an ammonia/water mixture instead of steam, combined with a novel oil-free scroll expander.

American Superconductor

Sustainable Economic mCHP Stirling (SEmS) Generator

American Superconductor (AMSC) in collaboration with team members Qnergy, Alcoa Howmet, Gas Technology Institute (GTI), MicroCogen Partners, and A.O. Smith Corporation will develop a Free-Piston Stirling engine (FPSE) powered by an ultra-low-emissions natural gas burner for micro-CHP applications. A Stirling engine uses a working gas housed in a sealed environment, in this case the working gas is helium. When heated by the natural gas-fueled burner, the gas expands causing a piston to move and interact with a linear alternator to produce electricity. As the gas cools and contracts, the process resets before repeating again. Advanced Stirling engines endeavor to carefully manage heat inside the system to make the most efficient use of the natural gas energy. The ITC design features free-piston architecture using flexure bearings thus eliminating rubbing parts and allowing for long system life under continuous use. The team will also develop novel materials that enable high-temperature engine operation, further increasing the efficiency of the system.

Applied Materials

Kerfless Crystalline-Silicon PV: Gas to Modules

Applied Materials is working with ARPA-E and the Office of Energy Efficiency and Renewable Energy (EERE) to build a reactor that produces the silicon wafers used in solar panels at a dramatically lower cost than existing technologies. Current wafer production processes are time consuming and expensive, requiring the use of high temperatures to produce ingots from molten silicon that can be sliced into wafers for use in solar cells. This slicing process results in significant silicon waste--or "kerf loss"--much like how sawdust is created when sawing wood. With funding from ARPA-E, Applied Materials is developing a reactor where ultra-thin silicon wafers are created by depositing silicon directly from vapor onto specialized reusable surfaces, allowing a significant reduction in the amount of silicon used in the process. Since high purity silicon is one of the most significant costs in producing solar cells, this kerf-less approach could significantly reduce the overall cost of producing solar panels. Applied Materials is partnering with Suniva, who will use funds from EERE to integrate these low-cost wafers into solar cells and modules that generate low-cost electricity, and with Arizona State University, who will develop high-efficiency devices on ultra-thin kerfless substrates. This partnership could enable low-cost, domestic manufacturing of solar modules, allowing the U.S. to reduce the amount of equipment we import from other countries.

Argonne National Laboratory

Intermediate Temperature Hybrid Fuel Cell System for the Conversion of Natural Gas to Electricity and Liquid Fuels

ANL is developing a new hybrid fuel cell technology that could generate both electricity and liquid fuels from natural gas. Existing fuel cell technologies typically convert chemical energy from hydrogen into electricity during a chemical reaction with oxygen or some other agent. In addition to generating electricity from hydrogen, ANL's fuel cell would produce ethylene--a liquid fuel precursor--from natural gas. In this design, a methane-coupling catalyst is added to the anode side of a fuel cell that, when fed with natural gas, creates a chemical reaction that produces ethylene and utilizes leftover hydrogen, which is then passed through a proton-conducting membrane to generate electricity. Removing hydrogen from the reaction site leads to increased conversion of natural gas to ethylene.

Arizona State University

High-Temperature InGaN Thermionic Topping Cells

ASU is developing a solar cell that can maintain efficient operation at temperatures above 400°C. Like many other electronics, solar panels work best in cooler environments. As the temperature of traditional solar cells increases beyond 100°C, the energy output decreases markedly and components are more prone to failure. ASU's technology adapts semiconducting materials used in today's light-emitting diode (LED) industry to enable efficient, long-term high-temperature operation. These materials could allow the cells to maintain operation at much higher temperatures than today's solar cells, so they can be integrated as the sunlight-absorbing surface of a thermal receiver in the next generation of hybrid solar collectors. The solar cell would provide electricity using a portion of the incoming sunlight, while the receiver collects usable heat at high temperature that can be stored and dispatched to generate electricity as needed.

Arizona State University

PV Mirror: A Solar Concentrator Mirror Incorporating PV Cells

ASU is developing a hybrid solar energy system that modifies a CSP trough design, replacing the curved mirror with solar cells that collect both direct and diffuse rays of a portion of sunlight while reflecting the rest of the direct sunlight to a thermal absorber to generate heat. Electricity from the solar cells can be used immediately while the heat can be stored for later use. Today's CSP systems offer low overall efficiency because they collect only direct sunlight, or the light that comes in a straight beam from the sun. ASU's technology could increase the amount of light that can be converted to electricity by collecting diffuse sunlight, or light that has been scattered by the atmosphere, clouds, and off the earth. By integrating curved solar cells into a hybrid trough system, ASU will effectively split the solar spectrum and use each portion of the spectrum in the most efficient way possible. Diffuse and some direct sunlight are converted into electricity in the solar cells, while the unused portion of the direct sunlight is reflected for conversion to heat.

Pages

Subscribe to Distributed Generation