Sorry, you need to enable JavaScript to visit this website.

Distributed Generation

Washington State University

De-Coupled Solid Oxide Fuel Cell Gas Turbine Hybrid (dFC-GT)

Washington State University will develop a hybrid power system using a high-pressure, high-temperature fuel cell stack and gas turbine. The project will examine the benefits of a decoupled design, in which the fuel cell stack and gas turbine components are not directly connected within the hybrid system. The team's other primary innovation is the integration of a membrane to concentrate oxygen from air supplied by the turbine before feeding it into the fuel cell, which avoids pressurizing the entire air feed stream, improving performance and boosting efficiency. The pressurized solid oxide fuel cell (SOFC) and a micro gas turbine (mGT) are physically separated by the ceramic oxygen transport membrane (OTM), which prevents the SOFC from being exposed to damaging pressure surges from the mGT. In this way, the decoupled system allows the individual components to contribute synergistically to the high-efficiency, cost-effective hybrid power generation system. By combining the efficiency of pressurized SOFC operation using natural gas and pure oxygen fuel with a microturbine in a decoupled configuration, the team hopes to achieve 75% fuel-to-electric efficiency.

West Virginia University Research Corporation

Advanced Stirling Power Generation System for Combined Heat and Power

West Virginia University Research Corporation (WVURC) and their partner, Infinia Technology Corporation, propose to demonstrate an advanced Stirling power generation system for residential CHP applications. A Stirling engine uses a working gas housed in a sealed environment, in this case the working gas is helium. When heated by the natural gas-fueled burner, the helium expands causing a piston to move and interact with a linear alternator to produce electricity. As the gas cools and contracts, the process resets before repeating again. Advanced Stirling engines endeavor to carefully manage heat inside the system to make the most efficient use of the natural gas energy. This project makes extensive use of additive manufacturing i.e. constructing components one layer at a time - similar to 3D printing. They propose using additive manufacturing because building the system as one piece minimizes interfacial heat losses and improves heat transfer, leading to increased efficiency.

West Virginia University Research Corporation

Oscillating Linear Engine and Alternator

West Virginia University Research Corporation (WVURC), along with its partners at ANSYS, Inc., Sustainable Engineering, Wilson Works, and Stryke Industries, will develop a CHP generator for residential use based on a two-stroke, spark-ignited free-piston internal combustion engine (ICE). Traditional internal combustion engines use the force generated by the combustion of a fuel (natural gas in this case) to move a piston, transferring chemical energy to mechanical energy, which when used in conjunction with a generator produces electricity. This free-piston design differs from traditional slider-crank ICE models by eliminating the crankshaft and using a spring to increase frequency and stabilize operation. The resulting design is compact with few moving parts and has reduced frictional losses. In place of a traditional alternator, this engine drives a permanent magnet linear electric generator.

Wisconsin Engine Research Consultants, LLC

Spark-Assisted HCCI Residential Generator

Wisconsin Engine Research Consultants (WERC) and its partners Adiabatics, Briggs and Stratton, and the University of Wisconsin-Madison will develop a generator using an internal combustion engine (ICE) that incorporates an advanced spark-assisted homogeneous charge compression ignition (SA-HCCI) system. Traditional internal combustion engines use the force generated by the combustion of a fuel (e.g. natural gas) to move a piston, transferring chemical energy to mechanical energy. This can then be used in conjunction with a generator to create electricity. SA-HCCI systems achieve combustion by compressing their fuel/air mix to the point of ignition, with a spark helping to initiate the process. These systems run very fuel lean and achieve high efficiency and waste less heat compared to conventional ICEs. In addition, the WERC team will further increase efficiency by incorporating thermal barrier coatings, an advanced boost system, and an optimized low-friction combustion chamber.

Yale University

Dual-Junction Solar Cells for High-Efficiency at Elevated Temperature

Yale University is developing a dual-junction solar cell that can operate efficiently at temperatures above 400 °C, unlike today's solar cells, which lose efficiency rapidly above 100°C and are likely to fail at high temperatures over time. Yale's specialized dual-junction design will allow the cell to extract significantly more energy from the sun at high temperature than today's cells, enabling the next generation of hybrid solar converters to deliver much higher quantities of electricity and highly useful dispatchable heat. Heat rejected from the cells at high temperature can be stored and used to generate electricity with a heat engine much more effectively than cells producing heat at lower temperatures. Therefore, electricity can be produced at higher overall efficiency for use even when the sun is not shining.

ARPA-E’s Technology-to-Market Advisors work closely with each ARPA-E project team to develop and execute a commercialization strategy. ARPA-E requires our teams to focus on their commercial path forward, because we understand that to have an impact on our energy mission, technologies must have a viable path into the marketplace. ARPA-E Senior Commercialization Advisor Dr. John Tuttle discusses what this Tech-to-Market guidance in practice looks like with reference to two project teams. OPEN 2012 awardees from Harvard University and Sunfolding share their stories of how ARPA-E worked with their teams to analyze market conditions and identify commercial opportunities that ultimately convinced them to pivot their technologies towards market applications with greater potential.

Many of ARPA-E’s technology programs seek to break down silos and build new technological communities around a specific energy challenge. In this video, ARPA-E’s Deputy Director for Technology Eric Rohlfing, discusses how the Full-Spectrum Optimized Conversion and Utilization of Sunlight (FOCUS) program is bringing together the photovoltaic (PV) and concentrated solar power (CSP) communities to develop hybrid solar energy systems. This video features interviews with innovators from the FOCUS project team made up by Arizona State University and the University of Arizona, and showcases how the FOCUS program is combining the best elements of two types of solar to get the most out of the full solar spectrum.


Subscribe to Distributed Generation